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Abstract
Understanding	the	spatial	scale	of	local	adaptation	and	the	factors	associated	with	
adaptive	diversity	are	important	objectives	for	ecology	and	evolutionary	biology,	and	
have	 significant	 implications	 for	 effective	 conservation	 and	 management	 of	 wild	
populations	and	natural	resources.	In	this	study,	we	used	an	environmental	associa-
tion	 analysis	 to	 identify	 important	 bioclimatic	 variables	 correlated	with	 putatively	
adaptive	genetic	variation	in	a	benthic	marine	invertebrate—the	giant	California	sea	
cucumber	(Parastichopus californicus)—spanning	coastal	British	Columbia	and	south-
eastern	Alaska.	We	used	a	redundancy	analysis	(RDA)	with	3,699	single	nucleotide	
polymorphisms	(SNPs)	obtained	using	RAD	sequencing	to	detect	candidate	markers	
associated	with	 11	 bioclimatic	 variables,	 including	 sea	 bottom	 and	 surface	 condi-
tions,	 across	 two	 spatial	 scales	 (entire	 study	 area	 and	 within	 subregions).	 At	 the	
broadest	scale,	RDA	revealed	59	candidate	SNPs,	86%	of	which	were	associated	with	
mean	bottom	temperature.	Similar	patterns	were	identified	when	population	struc-
ture	was	accounted	for.	Additive	polygenic	scores,	which	provide	a	measure	of	the	
cumulative	signal	across	all	candidate	SNPs,	were	strongly	correlated	with	mean	bot-
tom	temperature,	consistent	with	spatially	varying	selection	across	a	thermal	gradi-
ent.	At	 a	 finer	 scale,	 23	 candidate	SNPs	were	detected,	 primarily	 associated	with	
surface	salinity	(26%)	and	bottom	current	velocity	(17%).	Our	findings	suggest	that	
environmental	variables	may	play	a	role	as	drivers	of	spatially	varying	selection	for	
P. californicus.	These	 results	provide	context	 for	 future	studies	 to	evaluate	 the	ge-
netic	basis	of	local	adaptation	in	P. californicus and	help	inform	the	relevant	scales	and	
environmental	variables	for	in	situ	field	studies	of	putative	adaptive	variation	in	ma-
rine	invertebrates.
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1  | INTRODUC TION

Heterogeneity	in	environmental	conditions	imposes	differential	se-
lection	pressures	across	space,	potentially	leading	to	the	adaptation	
of	populations	to	local	environments	(Kawecki	&	Ebert,	2004).	In	the	
marine	environment,	nearshore	regions	are	characterized	by	steep	
gradients	 in	temperature,	salinity	and	other	abiotic	factors,	due	to	
persistent	upwelling	systems,	warming	by	the	air	and	sun,	exposure	
to	 freshwater	 run-off,	 and	 pollution	 from	 coastal	 developments	
(Breitburg,	 Hondorp,	 Davias,	 &	 Diaz,	 2009;	 Foreman,	 Callendar,	
Masson,	Morrison,	&	Fine,	2014).	These	factors	have	the	potential	
to	maintain	adaptive	polymorphisms	via	spatially	varying	selection	
(Bradbury	 et	 al.,	 2010;	 Gagnaire,	 Normandeau,	 Côté,	 Hansen,	 &	
Bernatchez,	2012;	Laporte	et	al.,	2016).	Evidence	of	local	adaptation	
associated	with	environmental	 conditions	 in	marine	populations	 is	
growing,	challenging	the	dogma	that	a	high	degree	of	gene	flow	pre-
cludes	adaptive	divergence	in	the	ocean	(Bernatchez,	2016;	Sanford	
&	Kelly,	2011).	Empirical	studies	have	identified	key	environmental	
predictors	of	adaptive	genetic	variation	across	environmental	gradi-
ents	in	marine	taxa	including	corals	(Lundgren,	Vera,	Peplow,	Manel,	
&	 van	Oppen,	 2013),	 eels	 (Babin,	 Gagnaire,	 Pavey,	 &	 Bernatchez,	
2017;	 Gagnaire	 et	 al.,	 2012),	 sticklebacks	 (Guo,	 DeFaveri,	 Sotelo,	
Nair,	&	Merilä,	 2015),	 lobsters	 (Benestan	 et	 al.,	 2016),	 and	Pacific	
(Hecht,	Matala,	Hess,	&	Narum,	2015)	 and	Atlantic	 (Jeffery	 et	 al.,	
2017)	salmon.

Marine	and	coastal	environments	are	 subject	 to	 rapid	changes	
in	physical	and	chemical	properties	including	temperature,	salinity,	
water	 circulation,	 pH	 and	 oxygen	 concentration	 (Hoegh-Guldberg	
et	 al.,	 2014),	 with	 important	 consequences	 for	 the	 development	
and	 survival	 of	 organisms	 inhabiting	 these	 regions	 (e.g.,	 Gobler,	
DePasquale,	 Griffith,	 &	 Baumann,	 2014;	 Kroeker	 et	 al.,	 2013;	
O’Connor	 et	 al.,	 2007).	 The	 ability	 for	marine	 species	 to	 adapt	 to	
novel	environmental	conditions	is	increasingly	important	as	unprec-
edented	rates	of	environmental	change	continue	to	threaten	marine	
biodiversity	(Hoegh-Guldberg,	Poloczanska,	Skirving,	&	Dove,	2017;	
Munday,	 Donelson,	 &	 Domingos,	 2017).	 Thus,	 understanding	 the	
spatial	scale	of	local	adaptation	and	the	factors	associated	with	adap-
tive	genetic	variation	is	important	for	the	effective	conservation	and	
management	of	wild	populations	and	natural	resources	(Bradbury	et	
al.,	2010;	Bernatchez	et	al.,	2017;	Nielsen,	Beger,	Henriques,	Selkoe,	
&	Heyden,	2017;	von	der	Heyden,	2017)	and	predicting	evolutionary	
responses	to	climate	change	and	environmental	disturbances	(Bay	et	
al.,	2017).	Quantifying	spatial	patterns	of	adaptive	genetic	variation	
has	implications	for	the	spatial	management	of	marine	populations,	
and	 is	 inherently	 central	 to	 the	 establishment	 of	marine	 reserves	
that	aim	to	protect	genetic	diversity	and	promote	resilience	to	envi-
ronmental	change	(von	der	Heyden,	2017).

In	 the	 last	 decade,	 several	 analytical	 methods	 have	 been	 de-
veloped	to	detect	putatively	adaptive	loci	from	genomic	data	sets,	
making	 it	possible	 to	assess	patterns	of	adaptive	genetic	variation	
in	 wild	 populations	 (Jensen,	 Foll,	 &	 Bernatchez,	 2016;	 Rellstab,	
Gugerli,	 Eckert,	 Hancock,	 &	 Holderegger,	 2015;	 Schoville	 et	 al.,	
2012).	 Differentiation-based	 detections	 of	 statistical	 outliers	 are	

now	commonplace,	whereby	extreme	 levels	of	 locus-specific	pop-
ulation	genetic	differentiation	(e.g.,	FST)	indicate	that	differentiation	
may	be	driven	by	adaptive	rather	than	neutral	demographic	or	his-
torical	processes	(Narum	&	Hess,	2011).	Additionally,	environmental	
association	analyses	(EAAs)	directly	associate	allele	frequencies	and	
environmental	conditions	hypothesized	to	influence	local	adaptation	
to	not	only	detect	genetic	variants	putatively	under	selection,	but	
also	 to	 characterize	 the	 environmental	 conditions	 contributing	 to	
adaptive	genetic	variation	 (Joost	et	al.,	2007;	Rellstab	et	al.,	2015;	
Schoville	et	al.,	2012;	Sork	et	al.,	2013).	EAAs	are	especially	prom-
ising	because	they	are	better	able	to	detect	relatively	weak	signals	
of	selection	compared	to	methods	based	on	population	differentia-
tion	(De	Mita	et	al.,	2013;	de	Villemereuil,	Frichot,	Bazin,	François,	&	
Gaggiotti,	2014;	Forester,	Lasky,	Wagner,	&	Urban,	2018).	In	particu-
lar,	multivariate	EAA	methods	model	the	effect	of	a	suite	of	environ-
mental	predictors	on	a	large	number	of	genetic	loci	simultaneously,	
thus	minimizing	the	number	of	statistical	tests.	Furthermore,	multi-
variate	EAA	methods	are	well	suited	to	detect	weak	multilocus	re-
sponses	to	environmental	conditions	by	modelling	the	covariance	of	
loci	in	response	to	environmental	conditions	(Bourret,	Dionne,	Kent,	
Lien,	&	Bernatchez,	2013;	Forester	et	al.,	2018;	Rellstab	et	al.,	2015).

In	this	study,	we	investigated	the	influence	of	bioclimatic	factors	
on	putatively	adaptive	genetic	variation	 in	a	benthic	marine	 inver-
tebrate—the	giant	California	 sea	 cucumber	 (Parastichopus californi‐
cus)—in	 the	northeastern	Pacific	Ocean.	P. californicus undergoes	a	
bipartite	life	cycle:	a	dispersive	pelagic	larval	stage	with	a	relatively	
long	pelagic	 larval	duration	 (up	to	120	days;	Lambert,	1997)	and	a	
relatively	sedentary	benthic	adult	stage	that	occupies	rocky,	sandy	
and	algae-covered	substrates	in	nearshore	regions	(Hamel	&	Mercier	
2008).	Commercial	harvesting	of	this	species	occurs	throughout	its	
distribution	 along	 the	 Pacific	 coast	 of	 North	 America.	 In	 Canada,	
commercial	harvesting	of	P. californicus is	managed	as	a	dive-only	ro-
tational	fishery	(DFO,	2014).	Though	sea	cucumbers	are	not	farmed	
in	Canada,	there	is	an	interest	to	establish	aquaculture	facilities	for	
P. californicus in	British	Columbia	(DFO,	2016).	As	such,	understand-
ing	the	role	of	environmental	factors	as	drivers	of	natural	selection	
in	this	species	could	help	inform	management-based	decisions	that	
aim	to	protect	adaptive	potential	 for	 the	future.	Previous	work	on	
this	species	in	the	same	region	identified	two	distinct	genetic	groups	
using	multiple	approaches	 for	evaluating	population	genetic	struc-
ture	 (Xuereb	 et	 al.,	 2018).	 These	 groups	 corresponded	 to	 regions	
north	and	south	of	Queen	Charlotte	Sound	at	 the	northern	 tip	of	
Vancouver	Island	(Figure	1),	which	corroborated	patterns	of	popula-
tion	genetic	structure	observed	in	other	marine	species	in	the	same	
region,	 including	 the	 rosethorn	 rockfish	 (Sebastes helvomaculatus; 
Rocha-Olivares	 &	 Vetter,	 1999)	 and	 the	 bat	 star	 (Pisaster miniata; 
Sunday,	Popovic,	Palen,	Foreman,	&	Hart,	2014).	However,	the	poten-
tial	for	environmental	conditions	to	influence	spatial	patterns	of	ge-
netic	variation	has	not	yet	been	evaluated.	Coastal	British	Columbia	
is	predicted	 to	experience	decreases	 in	 surface	salinity	as	a	 result	
of	 increases	in	freshwater	run-off	(Foreman	et	al.,	2014;	Morrison,	
Callendar,	Foreman,	Masson,	&	Fine,	2014),	and	increases	in	surface	
temperature	and	intensification	of	surface	currents	(Foreman	et	al.,	
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2014).	Changes	 in	 oceanic	 heat	 content	 and	 thermal	 stratification	
are	 likely	 to	 influence	 subsurface	 conditions	 in	 the	 future	 as	well	
(Abraham	et	 al.,	 2013),	 potentially	 impacting	both	 the	pelagic	 and	
benthic	life	stages	of	P. californicus and	other	marine	invertebrates.

Our	main	objective	was	to	identify	the	environmental	variables	
contributing	to	spatial	patterns	of	putatively	adaptive	genetic	varia-
tion	across	sampled	locations.	We	tested	for	associations	between	
allele	frequencies	at	single	nucleotide	polymorphism	(SNP)	loci	de-
rived	from	restriction-site	associated	DNA	sequencing	(RADseq)	and	
bioclimatic	factors	predicted	to	influence	local	adaptation	of	sea	cu-
cumbers	using	a	multivariate	constrained	ordination	EAA	approach	
over	two	spatial	scales:	(a)	across	the	entire	sampled	geographic	area	
and	(b)	within	regional	groups.	We	considered	candidate	loci	poten-
tially	under	 selection	based	on	 the	 loadings	of	SNPs	 in	ordination	
space,	and	identified	the	environmental	variables	most	strongly	cor-
related	with	candidate	 loci.	We	then	evaluated	how	candidate	 loci	
collectively	 varied	 with	 the	 best-associated	 environmental	 condi-
tions	across	our	sampling	locations.

2  | METHODS

2.1 | Sampling and laboratory methods

The	analyses	 in	 this	 study	were	performed	on	 the	same	data	pre-
sented	in	Xuereb	et	al.	(2018).	Whereas	the	previous	study	retained	
only	those	SNPs	identified	as	putatively	neutral	for	analyses	of	pop-
ulation	structure	and	connectivity,	we	included	the	full	set	of	filtered	
SNPs	(3,699	SNPs)	for	analyses	of	adaptive	genetic	variation	in	this	
study.	 Sample	 collections,	 sequencing	methods	 and	 filtering	 steps	
are	described	here	in	brief	but	we	refer	to	Xuereb	et	al.	 (2018)	for	
full	details.

Tissue	samples	were	collected	 from	adult	Parastichopus califor‐
nicus by	SCUBA	from	24	sampling	 locations	along	 the	coastline	of	
British	Columbia	 (BC)	and	southeastern	Alaska	 (Figure	1),	with	the	
number	of	individual	specimens	(spike	clips)	collected	from	each	lo-
cation	 ranging	between	30	and	41.	These	 sites	 capture	 latitudinal	
variability	 along	 a	 linear	 coastline	 as	well	 as	 conditions	within	ba-
sins	 between	Vancouver	 Island	 and	 the	BC	mainland	 and	 in	more	
remote	regions	(Figure	1).	Whole	genomic	DNA	was	extracted	from	

individual	 tissue	 samples	 using	 the	 DNeasy	 spin	 column	 protocol	
(QIAGEN,	Toronto,	ON,	Canada).	Libraries	were	prepared	using	the	
RAD	 sequencing	 protocol	 of	 Poland,	 Brown,	 Sorrells,	 and	 Jannink	
(2012),	and	single-end	sequencing	was	performed	on	the	Ion	Proton™	
platform	(Life	Technologies,	Grand	Island,	NY)	at	the	core	sequenc-
ing	 facility	 at	 the	 Institut	 de	 Biologie	 Intégrative	 et	 des	 Systèmes	
at	 Université	 Laval	 (Québec,	 Canada).	 Raw	 reads	 were	 aligned	 to	
the	genome	of	a	closely	related	species	 (Parastichopus parvimensis; 
Cameron,	Samanta,	Yuan,	He,	&	Davidson,	2009)	and	a	catalogue	of	
putative	loci	was	built	with	stacks	version	1.4.4	(Catchen,	Hohenlohe,	
Bassham,	Amores,	&	Cresko,	2013),	allowing	for	a	maximum	of	three	
mismatches	between	loci	(n = 3).	Initial	filtering	steps	performed	in	
stacks	included	retaining	SNPs	with	a	minimum	stack	depth	of	four	
(m = 4),	 present	 in	 at	 least	 16	 sampling	 locations	 (one-third	 of	 the	
total	number	of	locations),	and	found	in	at	least	70%	of	individuals	
within	 each	 sampling	 location.	We	 subsequently	 removed	 loci	 ex-
hibiting	a	deficiency	or	excess	of	heterozygosity	(Ho	>	0.6	in	at	least	
one	site;	FIS>0.5	or	<−0.5),	as	well	as	loci	with	either	a	minor	allele	
frequency	(MAF)	less	than	0.01	across	all	sites	or	less	than	0.1	within	
at	least	one	site.	We	also	excluded	one	locus	per	pair	of	loci	in	high	
linkage	disequilibrium	(LD)	(R2	>	0.8)	from	the	full	set	of	markers,	as	
well	as	samples	with	more	than	30%	missing	data.	See	Xuereb	et	al.	
(2018)	for	a	full	description	of	the	parameters	used	to	filter	the	data	
set	and	the	number	of	loci	removed	after	each	filtering	step.

2.2 | Environmental predictors

We	considered	a	total	of	14	environmental	variables	including	tem-
perature,	salinity,	current	velocity,	dissolved	oxygen	concentration	
and	chlorophyll	concentration	at	each	of	the	24	sampling	locations	
(Supporting	 Information	 Table	 S1)	 as	 potential	 drivers	 of	 spatially	
varying	selection.	We	used	monthly	surface	temperature	data	 (°C)	
between	2002	and	2010	and	monthly	surface	salinity	data	(psu)	be-
tween	1955	and	2006	 from	 the	marspec	 (Sbrocco	&	Barber,	 2013)	
database	at	a	resolution	of	1	km	(originally	derived	from	the	World	
Oceans	Atlas	2009	(Antonov	et	al.,	2010)	and	Aqua-MODIS	(http://
oceancolor.gsfc.nasa.gov/),	 respectively).	 We	 included	 the	 mean,	
minimum	 and	 maximum	 monthly	 measurements	 for	 both	 surface	
temperature	 and	 salinity,	 as	 selection	may	 be	 influenced	 by	 both	

F I G U R E  1   (a)	Mean	bottom	
temperature	(data	from	bio‐oracle; 
Tyberghein	et	al.,	2012)	and	(b)	mean	
surface	salinity	(data	from	marspec; 
Sbrocco	&	Barber,	2013)	in	the	
coastal	region	of	British	Columbia	and	
southeastern	Alaska;	black	dots	indicate	
P. californicus sampling	locations.	The	
dashed	line	in	(a)	indicates	the	location	of	
the	genetic	break	identified	in	Xuereb	et	
al.	(2018)	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/
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average	and	extreme	climatic	conditions.	Using	a	principal	compo-
nents	analysis	(PCA),	sea	surface	salinity	and	sea	surface	tempera-
ture	(mean,	minimum	and	maximum)	were	reduced	to	three	principal	
components	 (PCs)	that	explained	97.5%	of	the	total	variation:	PC1	
was	negatively	correlated	with	sea	surface	salinity;	PC2	was	posi-
tively	correlated	with	mean	and	maximum	sea	surface	temperature;	
PC3	was	negatively	correlated	with	minimum	surface	temperature	
(Table	1).	These	PC	axes	were	subsequently	used	as	predictor	vari-
ables	 representing	 sea	 surface	 salinity	 (PC1)	and	sea	 surface	 tem-
perature	(PC2	and	PC3)	in	the	constrained	ordinations	(see	below).	
As	environmental	conditions	at	the	bottom	can	also	influence	local	
adaptation	 in	 populations	 of	 benthic	 organisms,	 we	 additionally	
included	 data	 for	 bioclimatic	 variables	 representing	 conditions	 at	
bottom	depth,	which	were	 obtained	 from	 the	 bio‐oracle	 database	
(Tyberghein	 et	 al.,	 2012;	 Supporting	 Information	 Table	 S2).	 These	
data	were	assembled	at	a	coarser	 resolution	 (9.2	km)	compared	 to	
the	marspec	data.	We	evaluated	the	pairwise	correlation	values	be-
tween	all	bio‐oracle	predictors	and	excluded	variables	demonstrat-
ing	 high	 correlation	 with	 other	 bioclimatic	 variables.	 Significance	
of	 the	 correlations	was	 assessed	 based	 on	 p-values	 corrected	 for	
multiple	tests	using	the	Benjamini-Hochberg	(BH)	method	(p	<	0.05)	
(Benjamini	 &	Hochberg,	 1994).	 Lastly,	 we	 assessed	multicollinear-
ity	between	all	predictor	variables	prior	to	performing	constrained	
ordinations	 (see	 below),	 using	 the	 variance	 inflation	 factor	 (VIF).	
Predictor	variables	with	VIF	>	10	were	excluded,	and	all	predictors	
were	 scaled	 and	 centred	 prior	 to	 analyses.	marspec and bio‐oracle 
data	were	obtained	using	 the	 sdmpredictors	 version	0.2.5	 package	
(Bosch,	2017)	in	r	(R	Core	Team	2016).

2.3 | Environmental association analysis: 
constrained ordinations

We	 performed	 a	 redundancy	 analysis	 (RDA)	 to	 detect	 candidate	
adaptive	loci	exhibiting	strong	associations	with	the	environmental	
variables	hypothesized	to	 influence	selection.	RDA	is	an	extension	
of	 linear	 regression	 in	which	both	 the	predictor	 and	 the	 response	

variables	are	multivariate.	This	approach	performs	a	PCA	on	the	re-
sponse	table	(here,	the	matrix	of	allele	frequencies)	while	constrain-
ing	the	PCA	axes	as	 linear	combinations	of	the	predictor	variables	
(i.e.,	 environmental	 variables).	 Allele	 frequencies	 were	 Hellinger	
transformed	prior	to	running	the	RDA	(Legendre	&	Gallagher,	2001).	
All	RDAs	were	performed	using	the	rda function	in	the	vegan	2.4-5	
(Oksanen	et	al.,	2017)	package	in	r.

We	estimated	the	proportion	of	variance	in	allele	frequencies	at	
3,699	SNPs	across	all	24	sampling	locations	that	could	be	explained	
by	environmental	predictors	based	on	the	adjusted	R2.	We	used	an	
analysis	of	variance	(ANOVA)	with	1,000	permutations	to	evaluate	
the	significance	of	the	global	RDA.	Then,	we	identified	candidate	loci	
based	on	 locus	scores	 (i.e.,	 the	 loading	of	each	 locus	 in	ordination	
space)	that	were	±3	SD	from	the	mean	loading	(following	Forester	et	
al.,	2018)	on	the	first	two	constrained	ordination	axes.	We	identified	
the	 environmental	 variables	 exhibiting	 the	 strongest	 associations	
with	each	candidate	adaptive	locus	using	a	Pearson’s	correlation	(r).

To	 further	 investigate	 the	 spatial	 distribution	 of	 putatively	
adaptive	 polymorphisms	 across	 our	 sampling	 locations,	 we	 evalu-
ated	 the	MAF	at	 the	 candidate	 loci	most	 strongly	 correlated	with	
environmental	 variables	within	 each	of	 the	24	 sampling	 locations.	
For	this,	we	used	an	arbitrary	cut-off	of	r = 0.65	to	select	candidate	
loci	showing	the	strongest	correlations	with	environment.	For	each	
locus	that	met	this	criterion,	we	performed	a	linear	regression	to	as-
sess	the	relationship	between	MAF	and	the	value	of	the	best-asso-
ciated	 environmental	 variable	 across	 sampling	 locations.	We	 used	
a BH p-value	adjustment	to	correct	for	multiple	tests	(Benjamini	&	
Hochberg,	1994).

In	 structured	 populations,	 genetic	 signatures	 of	 selection	may	
be	 confounded	 with	 signatures	 of	 neutral	 (i.e.,	 historical	 or	 de-
mographic)	 processes	 that	may	 be	 falsely	 interpreted	 as	 selection	
(Excoffier,	Hofer,	&	Foll,	2009).	Corrections	for	population	structure	
are	 thus	 recommended	to	control	 for	signals	generated	by	neutral	
processes,	 although	 these	 corrections	 can	 also	 be	 overly	 conser-
vative	 in	some	cases	by	 inadvertently	removing	true	signals	of	se-
lection	(Forester	et	al.,	2018).	Nonetheless,	we	performed	a	second	
RDA	in	which	we	account	for	population	structure	to	determine	its	
effect	on	detections	of	candidate	loci.	We	used	a	spatial	eigenfunc-
tion	analysis	to	account	for	population	structure	following	a	similar	
approach	to	that	described	in	Forester	et	al.	 (2018).	We	computed	
distance-based	Moran’s	eigenvector	maps	 (dbMEMs)	based	on	the	
Euclidean	distances	between	sampling	locations,	which	decompose	
the	 spatial	 relationships	 among	 sampled	 sites	 into	 a	 set	 of	 spatial	
variables	 (Dray,	 Legendre,	 &	 Peres-Neto,	 2006).	 We	 used	 the	 r 
package	adespatial	version	0.1-0	(Dray	et	al.,	2017)	to	compute	db-
MEMs.	First,	a	PCA	was	performed	on	Hellinger-transformed	allele	
frequencies	across	all	3,699	loci	and	retained	the	first	three	PC	axes	
based	on	visualization	of	a	screeplot.	We	performed	a	RDA	with	the	
retained	PC	axes	as	the	response	variables	and	all	dbMEMs	as	the	
explanatory	 variables,	 and	 subsequently	 used	 a	 forward	 selection	
procedure	 (Blanchet,	 Legendre,	 &	 Borcard,	 2008)	 to	 identify	 sig-
nificant	dbMEM	variables.	The	significant	dbMEMs	were	then	used	
as	conditioning	variables	in	a	partial	RDA	and	candidate	SNPs	after	

TA B L E  1  Factor	loadings	of	the	marspec	bioclimatic	variables	on	
the	first	three	principal	component	axes	with	per	cent	of	variance	
explained	by	each	axis	in	parentheses

Bioclimatic 
variable PCA1 (60%) PCA2 (24%) PCA3 (14%)

SSS	annual	mean −0.493 0.267 −0.157

SSS	monthly	min −0.486 0.282 −0.044

SSS	monthly	max −0.481 0.279 −0.224

SST	annual	mean 0.368 0.566 −0.113

SST	coldest	ice	
free	month

0.322 0.144 −0.836

SST	warmest	ice	
free	month

0.226 0.656 0.460

Note.	Loadings	represent	correlation	coefficients	between	the	variables	
and	the	PC	axes.
SSS:	sea	surface	salinity;	SST:	sea	surface	temperature.
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correcting	 for	population	 structure	were	detected	using	 the	 same	
methods	as	described	previously.

2.4 | Comparison with differentiation‐based 
outlier detection

In	 addition	 to	 RDA,	 we	 used	 a	 population	 differentiation-based	
approach	 to	detect	 candidate	 loci	under	 selection	 to	compare	de-
tections	across	methods.	Specifically,	we	used	Bayescan,	which	es-
timates	the	posterior	probability	of	SNPs	under	selection	based	on	
FST	values	 (Foll	&	Gaggiotti,	2008).	This	approach	was	used	previ-
ously	on	the	same	data	set	 to	 retain	only	putatively	neutral	mark-
ers	for	analyses	of	population	genetic	structure,	using	prior	odds	of	
10,000,	a	q-value	threshold	of	0.01,	and	with	10,000	iterations	and	
200,000	burn-in	steps	(see	Xuereb	et	al.,	2018).	Here,	we	retained	
the	55	SNPs	(out	of	a	total	of	3,699	SNPs)	identified	as	being	under	
divergent	selection	to	determine	the	proportion	of	candidate	mark-
ers	detected	by	both	methods.

2.5 | Additive polygenic scores

We	used	an	approach	based	on	additive	polygenic	scores	for	each	
individual	 to	evaluate	the	cumulative	effect	of	all	candidate	 loci	 in	
response	 to	environmental	 conditions	 (Gagnaire	&	Gaggioti	2016),	
following	 Babin	 et	 al.	 (2017).	We	 first	 assessed	 the	 extent	 of	 LD	
based	on	R2	values	between	all	pairs	of	loci	identified	as	being	under	
selection	 to	 ensure	 that	 candidate	 loci	 were	 not	 strongly	 linked.	
Polygenic	scores	were	calculated	by	first	identifying	alleles	across	all	
candidate	loci	that	were	associated	with	increasing	values	of	a	given	
environmental	 variable	 (e.g.,	mean	 bottom	 temperature)	 based	 on	
the	direction	of	correlation	between	allele	frequencies	and	the	envi-
ronmental	condition.	A	score	was	calculated	for	each	individual	sea	
cucumber	by	summing	the	total	number	of	 favoured	alleles	within	
a	particular	environment	across	all	candidate	 loci.	Then,	we	evalu-
ated	 the	 relationship	between	 individual	additive	polygenic	scores	
and	environmental	variables	independently	using	both	a	linear	and	
a	quadratic	model,	and	determined	the	best-fit	model	based	on	the	
lowest	Akaike	information	criterion	(AIC)	value.	We	performed	the	
polygenic	 score	 analysis	 separately	 using	 the	 candidate	 loci	 de-
tected	without	correction	for	population	structure	(by	both	RDA	and	
Bayescan)	 and	with	 correction	 for	population	 structure	 (by	partial	
RDA),	and	compared	the	two	approaches.

2.6 | Candidate SNPs under selection at a finer 
spatial scale

We	performed	a	second	RDA	using	the	same	methods	as	described	
above	within	north	and	south	regional	areas	independently	(with	no	
correction	 for	 population	 structure)	 to	 determine	 whether	 selec-
tion	pressures	vary	between	whole-coast	and	within-region	scales.	
These	two	areas	consisted	each	of	12	sampling	sites	located	north	
and	south	of	Queen	Charlotte	Sound	identified	as	belonging	to	two	
distinct	genetic	clusters	in	Xuereb	et	al.	(2018)	(Figure	1).

3  | RESULTS

3.1 | Sequencing and marker filtering

On	average,	2.75	million	raw	reads	per	sample	were	obtained	from	
RAD	sequencing	and	aligned	with	the	Parastichopus parvimensis ge-
nome.	A	total	of	94,842	SNPs	were	retained	from	the	catalogue	of	
~1.81	million	putative	loci.	Subsequent	filtering	steps	based	on	mini-
mum	presence,	observed	heterozygosity,	and	local	and	global	minor	
allele	 frequencies	 retained	4,340	SNPs.	After	 excluding	one	 locus	
from	each	pair	in	LD	(R2	>	0.8),	a	total	of	3,699	SNPs	were	retained,	
in	717	individuals	across	the	24	sampling	locations,	for	subsequent	
analyses.	Further	details	are	provided	in	Xuereb	et	al.	(2018).

3.2 | Environmental predictors

Several	significant	correlations	were	observed	between	pairs	of	the	
bio‐oracle	 environmental	 variables	 (Supporting	 Information	 Table	
S2).	As	such,	we	opted	to	exclude	three	variables:	“bottom	dissolved	
oxygen	 concentration,”	 “bottom	 chlorophyll	 concentration”	 and	
“maximum	temperature	at	the	bottom”	from	our	set	of	predictors.	All	
of	the	remaining	predictor	variables,	including	PC	axes	representing	
surface	salinity	and	surface	temperature,	had	a	VIF	<	10,	both	at	the	
broad	scale	(i.e.,	among	all	24	sites)	and	within	the	south	region,	indi-
cating	no	issues	of	multicollinearity	among	the	predictors	(Table	2).	
We	excluded	bottom	current	velocity	 from	the	analysis	within	the	
north	region	as	it	had	a	VIF	>	10.

3.3 | Environmental association analysis: 
constrained ordinations

The	RDA	with	all	3,699	SNPs	including	all	24	sampling	locations	was	
globally	 significant	 (ANOVA	F(8,15)	=	1.26,	p = 0.001)	 and	explained	
about	8%	of	the	variance	(adjusted	R2	=	0.083)	(Figure	2a).	Only	the	
first	RDA	axis	was	significant	 (p = 0.002).	However,	we	considered	

TA B L E  2  Variance	inflation	factor	(VIF)	for	predictor	variables	
included	in	the	constrained	ordinations	at	the	broad	scale	(VIFall)	
and	among	the	sampling	sites	within	the	south	(VIFsouth)	and	north	
(VIFnorth)	groups,	excluding	variables	with	VIF>10

Environmental 
variables VIFall VIFsouth VIFnorth

PC1 2.06 2.19 1.63

PC2 1.19 1.98 2.47

PC3 1.17 1.81 1.45

Current	velocity	(B) 2.13 1.97 —

Mean	temperature	(B) 1.40 3.65 1.26

Minimum	tempera-
ture	(B)

2.66 2.43 2.03

Mean	salinity	(B) 1.30 2.85 2.07

Current	velocity	(S) 1.53 1.96 2.19

Note. (B)	=	bottom	and	(S)	=	surface.	
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candidate	 loci	 on	 the	 first	 two	 constrained	 canonical	 axes,	which	
explained	 14.2%	 and	 4.15%	 of	 the	 genetic	 variation,	 respectively.	
Based	on	locus	scores	that	were	±3	SD	from	the	mean	loadings,	59	
loci	were	identified	as	candidates	(51	candidate	loci	were	detected	
on	RDA	axis	1	and	8	candidate	 loci	were	detected	on	RDA	axis	2;	
Figure	2b).	The	majority	of	candidate	loci	(51;	86%)	were	associated	
with	mean	bottom	temperature.	Of	the	remaining	candidate	loci,	3	

(5%)	were	associated	with	mean	bottom	salinity,	3	(5%)	were	associ-
ated	with	bottom	current	velocity,	1	(2%)	was	associated	with	mini-
mum	bottom	temperature,	and	1	(2%)	was	associated	with	mean	and	
maximum	surface	temperature	(PC2).

Overall,	sixteen	out	of	the	59	candidate	loci	identified	by	RDA	
exhibited	correlation	coefficients	(r)	greater	than	0.65	(either	pos-
itively	 or	 negatively	 correlated)	 with	 environment,	 all	 of	 which	

F I G U R E  2  Redundancy	analysis	(RDA)	performed	with	3,699	SNPs	(grey	filled	circles	in	the	centre)	and	eight	environmental	variables	
(blue	arrows)	on	the	first	two	constrained	ordination	axes	(a)	with	no	correction	for	population	structure	and	(c)	with	correction	for	
population	structure	by	conditioning	on	significant	dbMEMs.	Candidate	loci	detected	based	on	locus	scores	±3	SD	from	the	mean	loading	
on	each	RDA	axis	are	shown	in	zoomed-in	plots	for	(b)	the	uncorrected	RDA	and	(d)	the	RDA	with	correction	for	population	structure,	and	
coloured	by	the	most	highly	correlated	environmental	explanatory	variable.	SNPs	not	identified	as	candidates	are	shown	in	grey;	blue	arrows	
represent	the	environmental	predictors	correlated	with	candidates	loci	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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were	 associated	 with	 mean	 bottom	 temperature	 (Supporting	
Information	Table	S3).	In	all	but	one	of	these	16	loci,	minor	allele	
frequencies	 were	 negatively	 correlated	with	mean	 bottom	 tem-
perature,	 indicating	 that	MAF	at	 these	candidate	 loci	 is	 lower	 in	
sampling	 locations	 with	 higher	 bottom	 temperatures	 (Figure	 3).	
The	relationship	between	MAF	and	temperature	at	sampling	loca-
tions	was	significant	for	all	loci	after	correcting	for	multiple	tests	
(Table	3).

Two	 significant	 spatial	 variables	 (dbMEM1	 and	 dbMEM2)	
were	 identified	 using	 forward	 selection	 and	 were	 retained	
as	 conditioning	 variables	 in	 a	 partial	 RDA	 to	 detect	 candidate	
loci	while	 correcting	 for	broad-scale	population	 structure.	The	
partial	 RDA	 was	 not	 significant	 overall	 (ANOVA	 F(8,13)	=	1.03,	
adjusted	R2	=	0.009,	p = 0.29),	likely	as	a	result	of	the	large	num-
ber	 of	 neutral	 SNPs	 contributing	 to	 the	 total	 genetic	 variation	
(Figure	2c).	Nevertheless,	we	 identified	candidate	SNPs	 in	 this	
partial	 model	 using	 the	 same	 threshold	 as	 above	 (±3	 SD	 from	
the	 mean	 loading).	 Using	 this	 approach,	 33	 outliers	 were	 de-
tected	 on	 the	 first	 two	 constrained	 axes:	 26	 on	 the	 first	 RDA	
axis	 and	 seven	 on	 the	 second	 RDA	 axis	 (Figure	 2d).	 Of	 these	
outlier	 loci,	 17	 (52%)	were	 associated	with	mean	 bottom	 tem-
perature;	4	(12%)	each	with	surface	salinity	(PC1)	and	minimum	
surface	 temperature	 (PC3);	 3	 (9%)	 each	 with	 bottom	 current	
velocity	and	bottom	salinity;	and	2	 (6%)	with	minimum	bottom	
temperature.	Considering	only	the	candidate	markers	that	were	
associated	with	mean	bottom	temperature,	as	these	made	up	the	
majority	of	candidates,	14	out	of	 the	17	outlier	SNPs	detected	
in	the	partial	RDA	were	also	detected	without	any	correction	for	
population	genetic	structure.

3.4 | Comparison with differentiation‐based 
outlier detection

Of	the	59	candidate	SNPs	under	selection	identified	by	RDA	and	the	
55	candidate	SNPs	identified	by	Bayescan,	a	total	of	43	detections	
overlapped	between	the	two	methods.	Thus,	across	both	methods,	
a	combined	total	of	71	unique	candidate	SNPs	were	detected	at	the	
broadest	spatial	scale.

3.5 | Additive polygenic scores

Pairwise	LD	between	all	detected	candidate	loci	was	weak	on	av-
erage	(mean	R2	=	0.04)	with	96%	of	pairwise	R2	values	below	0.2	
(all	pairwise	R2	values	are	shown	in	Supporting	Information	Table	
S4),	 suggesting	that	candidate	 loci	are	not	 in	strong	LD.	We	first	
evaluated	the	relationship	between	additive	polygenic	scores	 for	
each	 individual	 sea	 cucumber	 across	 the	 71	 putatively	 adaptive	
loci	 detected	 by	 both	methods	 described	 above,	 and	mean	 bot-
tom	 temperature.	 Additive	 polygenic	 scores	 increased	 signifi-
cantly	 with	 increasing	 mean	 bottom	 temperature	 (linear	 model:	
R2	=	0.251,	 p < 2.2 × 10−16)	 (Figure	 4a).	 The	 quadratic	model	 had	
only	a	slightly	 lower	AIC	score	 (quadratic	model:	AIC	=	5,393.34;	
linear	model:	 AIC	=	5,394.20)	 and	 explained	 a	 similar	 proportion	
of	 variation	 in	 allele	 frequencies	 at	 candidate	markers	 (quadratic	
model: R2	=	0.253,	 p < 2.2 × 10−16)	 compared	 to	 a	 linear	 model	
(Supporting	 Information	 Figure	 S1a).	We	 performed	 the	 analysis	
again	using	polygenic	scores	calculated	over	the	33	candidate	loci	
that	were	detected	by	the	partial	RDA	after	correcting	for	popula-
tion	structure	and	observed	a	similar	significant	positive	association	

F I G U R E  3  Minor	allele	frequency	(MAF)	as	a	function	of	mean	
bottom	temperature	(°C)	for	each	of	the	16	SNPs	exhibiting	the	
strongest	correlation	(r	>	0.65)	with	bottom	temperature.	Solid	lines	
represent	the	fit	from	a	linear	regression	for	each	candidate	SNP	
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

TA B L E  3  Linear	regression	statistics	for	each	of	the	candidate	
loci	showing	strong	correlation	(r	>	0.65)	with	mean	bottom	
temperature

SNP ID Adjusted R2 F P Padj

18502_23 0.49 23.15 <0.0001 0.0002

19470_22 0.44 18.85 0.0003 0.0003

23125_37 0.45 20.18 0.0002 0.0002

25272_11 0.46 20.54 0.0002 0.0002

26371_22 0.37 14.54 0.0010 0.0010

28612_55 0.52 25.49 <0.0001 0.0001

32489_65 0.59 34.07 <0.0001 <0.0001

37255_35 0.43 18.42 0.0003 0.0003

50798_43 0.56 30.85 <0.0001 <0.0001

51085_60 0.49 23.51 <0.0001 0.0002

51635_56 0.52 25.51 <0.0001 0.0001

51843_53 0.47 21.69 0.0001 0.0002

5610_31 0.47 21.14 0.0001 0.0002

57735_28 0.40 16.28 0.0006 0.0006

57938_62 0.56 30.02 <0.0001 <0.0001

6883_27 0.61 36.64 <0.0001 <0.0001

Note.	Adjusted	P-values	(Padj)	are	based	on	a	Benjamini-Hochberg	correc-
tion	for	multiple	tests.
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between	 polygenic	 scores	 and	mean	 bottom	 temperature,	 albeit	
with	 lower	 statistical	 support	 given	 the	 reduced	 number	 of	 loci	
(R2	=	0.133,	p < 2.2 × 10−16)	(Figure	4b	and	Supporting	Information	
Figure	S1b).	AIC	scores	for	 the	quadratic	and	 linear	models	were	
similar	(quadratic	model:	AIC	=	5,393.34;	linear	model:	5,394.20).

3.6 | Candidate SNPs under selection at a finer 
spatial scale

Within	 the	 north	 region,	 the	 RDA	 was	 not	 significant	 (ANOVA	
F(7,4) =	0.95,	 p = 0.93)	 and	 the	 proportion	 of	 variance	 explained	 by	
the	predictor	variables	was	negligible	 (adjusted	R2	=	−0.034);	 thus,	
we	did	 not	 consider	 candidate	 loci	 and	 associations	with	 environ-
mental	factors	within	this	region.	In	the	south	region,	the	proportion	
of	 total	 genetic	 variance	 explained	by	 the	 predictor	 variables	was	
similar	 to	 that	observed	for	 the	 total	data	set	 (adjusted	R2	=	0.07),	
and	the	global	RDA	was	significant	(ANOVA	F(8,3) =	1.11,	p = 0.017)	
(Figure	5a).	As	with	 the	broad	coastal	 scale,	we	considered	candi-
date	loci	on	the	first	two	constrained	axes,	which	explained	13.4%	
and	 10.2%	 of	 the	 genetic	 variance,	 respectively.	We	 detected	 23	
candidate	loci:	11	on	the	first	RDA	axis	and	12	on	the	second	RDA	
axis	 (Figure	 5b).	Of	 these	 candidate	 loci,	 6	 (26%)	were	 associated	
with	surface	salinity	(PC1),	4	(17%)	were	associated	with	bottom	cur-
rent	velocity,	3	 (13%)	were	associated	with	minimum	bottom	tem-
perature,	3	(13%)	were	associated	with	mean	bottom	temperature,	
3	 (13%)	were	associated	with	bottom	salinity,	2	 (7%)	were	associ-
ated	with	PC3	 (minimum	surface	 temperature),	1	 (4%)	was	associ-
ated	with	PC2	(mean	and	maximum	bottom	temperature),	and	1	(4%)	

was	associated	with	surface	current	velocity.	At	the	regional	scale,	
locus-specific	FST	values	were	very	low	(maximum	FST	=	0.005)	and	
Bayescan	did	not	detect	FST	outliers	under	divergent	selection	at	this	
scale	with	a	q-value	threshold	of	0.01.

4  | DISCUSSION

In	this	study,	we	investigated	the	influence	of	environmental	features	
as	potential	drivers	of	adaptive	divergence	in	a	benthic	marine	spe-
cies,	the	giant	California	sea	cucumber	(Parastichopus californicus).	The	
primary	question	we	asked	was:	What	are	the	environmental	condi-
tions	driving	differentiation	at	putatively	adaptive	genetic	loci?	Using	
a	multivariate	EAA,	we	 identified	a	 subset	of	 candidate	 loci	 from	a	
data	set	of	3,699	SNPs	derived	from	RAD	sequencing	exhibiting	as-
sociations	with	bioclimatic	variables	hypothesized	 to	 influence	 spa-
tially	varying	selection	in	benthic	marine	organisms.	We	also	used	an	
approach	based	on	additive	polygenic	scores	to	assess	the	relation-
ship	between	candidate	markers	collectively	and	mean	bottom	tem-
perature,	which	was	 identified	as	an	 important	predictor	of	genetic	
variation	at	putative	 loci	under	selection,	across	sampling	 locations.	
Moreover,	different	genotype-environment	associations	were	identi-
fied	within	the	south	region,	compared	to	the	entire	geographic	range	
included	in	our	analyses,	implying	that	selection	pressures	may	differ	
across	 spatial	 scales.	The	 results	of	 these	analyses	 imply	 that	envi-
ronmental	conditions,	especially	bottom	temperature	and/or	surface	
salinity,	may	play	important	roles	as	drivers	of	spatial	patterns	of	puta-
tive	adaptive	genetic	variation	that	could	influence	local	adaptation.

F I G U R E  4  Relationship	between	individual	additive	polygenic	scores	calculated	(a)	across	71	candidate	SNPs	identified	by	RDA	with	
no	correction	for	population	structure	and	Bayescan	and	(b)	across	33	candidate	SNPs	identified	by	RDA	after	correcting	for	population	
structure,	and	the	mean	bottom	temperature	across	sampling	locations.	The	solid	line	represents	the	regression	line	from	the	linear	model,	
and	the	shaded	area	represents	the	95%	confidence	interval.	Each	dot	represents	an	individual	sea	cucumber	[Colour	figure	can	be	viewed	
at	wileyonlinelibrary.com]
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Similar	to	other	studies	using	EAA	approaches	to	detect	candi-
date	loci	under	selection	in	marine	systems	(e.g.,	Bay	&	Palumbi,	2014;	
Benestan	et	al.,	2016;	De	Wit	&	Palumbi,	2013;	van	Wyngaarden	et	
al..,	2017),	we	identified	a	subset	of	SNPs	showing	strong	associa-
tions	with	environmental	factors.	A	larger	set	of	candidate	loci	(59)	
was	detected	across	all	24	sampling	locations	compared	to	within	the	
south	region	alone	(23)	using	RDA.	In	our	study,	restricted	gene	flow	
associated	 with	 ocean	 current	 circulation	 between	 the	 north	 and	
south	subregions	 (Xuereb	et	al.,	2018)	may	 facilitate	divergent	se-
lection	at	this	broad	spatial	scale.	Though	this	previous	study	found	
significant,	 albeit	 weak	 substructure	 within	 subregions	 (AMOVA,	
FST	within	regions	=	0.002,	p = 0.001),	the	detection	of	outlier	SNPs	
within	 the	 south	 region	 independently	 suggests	 that	 adaptive	dif-
ferentiation	may	indeed	occur	in	the	presence	of	considerable	gene	
flow	(Yeaman	&	Otto,	2011).

4.1 | Environmental drivers of adaptive 
differentiation

Our	results	suggest	that	sea	bottom	temperature	 is	an	 important	
predictor	of	genetic	variation	at	candidate	loci	over	a	broad	spatial	
scale	 and	 thus	may	 be	 a	 potential	 driver	 of	 spatially	 varying	 se-
lection	for	P. californicus.	Sea	bottom	temperature	represents	the	
thermal	environment	experienced	by	the	benthic	life	stage	and	may	
thus	be	a	selective	agent	acting	on	settlers	and/or	adults.	Indeed,	
other	studies	have	demonstrated	that	temperature	is	a	significant	
determinant	 of	 adaptive	 differentiation	 among	 populations	 or	 of	

clinal	patterns	of	adaptive	genetic	structure	in	other	marine	species	
(Stanley	et	al.,	2018),	such	as	Atlantic	cod	exhibiting	parallel	clines	
in	variation	on	either	side	of	 the	Atlantic	Ocean	 (Bradbury	et	al.,	
2010),	as	well	as	in	other	marine	invertebrates	including	purple	sea	
urchins	(Strongylocentrotus purpuratus)	spanning	a	latitudinal	gradi-
ent	 from	 the	 Pacific	 coast	 of	 Canada	 to	 Baja	 California	 (Pespeni	
&	Palumbi,	2013),	 reef-building	corals	 (Acropora hyacinthus)	occu-
pying	pools	with	different	thermal	conditions	in	the	south	Pacific	
Ocean	(Bay	&	Palumbi,	2014;	Palumbi,	Barshis,	Traylor-Knowles,	&	
Bay,	2014)	and	American	lobster	 inhabiting	spatially	varying	tem-
perature	regimes	in	the	Northwest	Atlantic	ocean	(Benestan	et	al.,	
2016).	It	is	possible	that	temperature	may	not	be	the	direct	causa-
tive	agent	of	selection,	but	instead	adaptation	may	be	directly	at-
tributable	to	other	variables	that	are	correlated	with	temperature.	
Nevertheless,	 variability	 in	water	 temperature	 is	 known	 to	 drive	
divergence	 in	 marine	 systems	 by	 selecting	 on	 thermal	 tolerance	
at	 multiple	 life	 history	 stages,	 affecting	 traits	 related	 to	 growth	
(Yanick,	 Heath,	 &	 Heath,	 2003),	 survival	 (Kuo	 &	 Sanford,	 2009;	
Osovitz	&	Hoffman,	2005;	Palumbi	et	al.,	2014)	and	reproduction	
(Pardo	&	Johnson,	2005).

The	 strong	 positive	 correlation	 observed	 between	 individual	
polygenic	scores	calculated	across	all	candidate	loci	and	mean	bot-
tom	temperature	is	consistent	with	spatially	varying	selection	across	
a	 temperature	 gradient,	 where	 different	 alleles	 are	 maintained	
in	 different	 thermal	 environments.	 A	 quadratic	model	 did	 not	 de-
scribe	the	relationship	between	polygenic	scores	and	temperature	
considerably	better	than	a	linear	model,	implying	that	the	strength	

F I G U R E  5   (a)	Redundancy	analysis	(RDA)	performed	within	the	south	region	with	3,699	SNPs	(grey	filled	circles	in	the	centre)	and	eight	
environmental	variables	(blue	arrows)	on	the	first	two	constrained	ordination	axes;	(b)	zoomed-in	plot	showing	candidate	loci	detected	based	
on	locus	scores	±3	SD	from	the	mean	loading	on	each	RDA	axis	coloured	by	the	most	highly	correlated	environmental	explanatory	variable.	
In	(b),	SNPs	not	identified	as	candidates	are	shown	in	grey;	blue	arrows	represent	the	environmental	predictors	correlated	with	candidates	
loci	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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of	selection	is	relatively	constant	across	the	temperature	gradient,	
though	the	number	of	candidate	 loci	may	 limit	our	capacity	to	de-
tect	minor	differences	in	selection	strength.	It	is	important	to	note	
that	 the	 interpretation	 of	 the	 role	 of	 polygenic	 selection	 may	 be	
somewhat	biased	since	we	cannot	completely	dismiss	the	possibil-
ity	 that	 some	 candidate	 loci	 are	 physically	 linked	without	 a	 refer-
ence	genome.	Yet,	 the	 lack	of	evidence	for	strong	statistical	LD	 is	
suggestive	 that	 these	markers	 are	 likely	 not	 physically	 linked.	We	
also	observed	that	 the	major	allele	showed	evidence	of	approach-
ing	fixation	at	high	temperatures	for	15	of	the	16	loci	most	strongly	
associated	 with	 bottom	 temperature	 (MAF	 close	 to	 0),	 with	 the	
minor	allele	segregating	at	 low	to	 intermediate	frequencies	 in	cold	
temperatures;	only	1	locus	showed	the	opposite	pattern.	This	could	
imply	that,	at	least	for	the	loci	most	strongly	associated	with	bottom	
temperature,	the	strength	of	selection	may	be	higher	in	warmer	tem-
peratures.	In	contrast,	higher	levels	of	polymorphism	in	cooler	sites	
may	be	maintained	via	several	mechanisms,	including	spatial	and/or	
temporal	balancing	selection	(Bergland,	Behrman,	O’Brien,	Schmidt,	
&	 Petrov,	 2014;	 Bernatchez,	 2016).	 Better	 characterization	 of	 the	
relative	strength	of	selection	across	the	temperature	gradient	would	
benefit	from	a	greater	number	of	candidate	loci,	and	disentangling	
the	selective	agents	driving	adaptive	differentiation	requires	exper-
imental	validation	of	allelic	effects,	combined	with	functional	infor-
mation	about	the	phenotypic	impact	of	loci	involved	(e.g.,	annotated	
genomic	resources).	Additionally,	increased	knowledge	of	the	demo-
graphic	and	environmental	patterns	over	time	(e.g.,	joint	time-series	
data	on	temperature	and	allele	frequency	dynamics)	would	improve	
our	 understanding	of	 changes	 in	 allele	 frequencies	 in	 response	 to	
changing	environmental	conditions.

Within	 the	 south	 region,	 surface	 salinity	and	bottom	current	
velocity	were	the	most	strongly	associated	environmental	predic-
tors	of	genetic	variation	at	candidate	loci,	given	both	the	number	
of	 candidate	 loci	 associated	 with	 environmental	 predictors	 and	
the	strength	of	correlations.	Surface	salinity	may	be	influenced	by	
freshwater	input	from	coastal	regions,	which	could	produce	a	se-
lective	gradient	over	relatively	small	spatial	scales	(Bible	&	Sanford,	
2016).	In	this	particular	region,	the	Fraser	River	discharges	fresh-
water	into	the	Salish	Sea,	potentially	leading	to	localized	decreases	
in	 sea	 surface	 salinity,	whereas	 salinity	 is	more	homogeneous	 in	
the	north	area	(Figure	1b).	Echinoderms	in	particular	may	be	sen-
sitive	to	salinity	stress	as	a	result	of	 their	water	vascular	system	
and	poor	ion	regulation	capabilities	(Binyon,	1972;	Russell,	2013;	
Stickle	 &	 Diehl,	 1987).	 Additionally,	 as	 reduced	 ocean	 circula-
tion	 can	 generate	 hypoxic	 conditions	 in	 the	 benthos	 (Matear	 et	
al.,	 2000G),	 variability	 in	 current	 velocities	may	 result	 in	 spatial	
variation	in	dissolved	oxygen	concentrations.	These	factors	could	
potentially	 lead	 to	 adaptive	 divergence	 in	 physiological	 traits	 to	
cope	with	stressful	conditions	and	should	be	investigated	further.

4.2 | Correcting for population structure

An	important	concern	in	statistical	approaches	that	identify	candi-
date	loci	under	selection	is:	To	what	extent	do	detected	loci	reflect	

a	 true	adaptive	signal	vs.	one	caused	primarily	by	demographic	or	
historical	 processes?	 On	 the	 one	 hand,	 methods	 that	 correct	 for	
population	 genetic	 structure	 can	 help	 eliminate	 potentially	 spuri-
ous	 detections	 of	 candidate	 loci	 with	 allele	 frequency	 patterns	
that	 resemble	 selection	 but	 are	 caused	 by	 neutral	 processes	 (de	
Villemereuil	et	al.,	2014;	Excoffier	et	al.,	2009).	On	the	other	hand,	
corrections	 for	 spatial	 structure	may	 be	 too	 conservative,	 poten-
tially	removing	true	adaptive	signals	and	resulting	in	an	overall	loss	
of	power	to	detect	loci	under	selection	(Forester	et	al.,	2018).	This	is	
because	selection	also	plays	a	fundamental	role	in	generating	spatial	
patterns	of	population	genetic	structure	(Charlesworth,	Nordborg,	&	
Charlesworth,	1997),	and	when	population	structure	is	confounded	
with	environmental	variables	driving	local	adaptation,	correcting	for	
population	 structure	 can	 effectively	 eliminate	 the	 signal	 of	 selec-
tion	one	 is	aiming	 to	 identify	 (Forester	et	al.,	2018;	Yeaman	et	al.,	
2016).	 Indeed,	 in	 a	 simulation-based	 study	 that	 tested	 the	perfor-
mance	of	EAA	methods,	Forester	et	al.	(2018)	found	that	RDAs	that	
did	not	correct	 for	population	structure	actually	performed	better	
than	those	that	included	spatial	variables.	Specifically,	they	showed	
that	 false-positive	 rates	 (FPRs)	 were	 elevated	 and	 true-positive	
rates	(TPRs)	decreased	considerably	when	correcting	for	population	
genetic	 structure,	whereas	 RDAs	 that	 did	 not	 include	 such	 a	 cor-
rection	exhibited	low	FPRs	(and	high	TPRs)	even	when	simulated	de-
mographic	scenarios	represented	refugial	expansions	that	covaried	
with	the	environmental	gradient.

In	our	study	region,	previous	work	identified	significant	popula-
tion	structure,	 splitting	north	and	south	 regional	groups	along	 the	
BC	continental	 shelf	 (Xuereb	et	 al.,	 2018),	 and	 thus,	 disentangling	
true	 environmental	 effects	 from	 historical	 or	 demographic	 pro-
cesses	 is	 challenging.	 However,	 results	 obtained	 from	 an	 analysis	
with	no	correction	for	population	structure	are	comparable	to	those	
obtained	when	using	a	more	conservative	approach	that	corrects	for	
population	structure	(although	with	fewer	candidate	loci	overall	and	
a	slightly	weaker	relationship	between	candidate	loci	and	mean	bot-
tom	temperature	when	the	correction	is	applied).	This	 implies	that	
correcting	 for	 population	 structure	 may	 indeed	 exclude	 loci	 that	
are	potentially	under	 selection.	Nonetheless,	 the	observation	 that	
bottom	temperature	remains	a	notable	predictor	of	genetic	variation	
across	candidate	loci	even	after	accounting	for	population	structure	
lends	support	for	an	effect	of	environmental	selection	driven	by	bot-
tom	temperature.	As	such,	bottom	temperature	has	 likely	contrib-
uted	 to	driving	divergence	between	P. californicus populations	 and	
may	continue	to	do	so	as	ocean	temperatures	shift.

4.3 | Limitations and future directions

The	 lack	 of	 genomic	 resources,	 such	 as	 annotated	 reference	 ge-
nomes,	for	P. californicus and	echinoderms	more	broadly,	presents	
a	 challenge	 for	 identifying	 candidate	 genes	 underlying	 observed	
relationships.	 The	 availability	 of	 an	 annotated	 reference	 genome	
would	 allow	matching	of	 potential	 candidate	 loci	 to	 the	 genomic	
regions	under	selection	and	gives	 insights	 into	the	specific	genes	
involved	in	local	adaptation	(Manel	et	al.,	2016).	The	vast	majority	
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of	nonmodel	systems	will	not	have	such	resources	readily	available	
and	the	cost	and	time	to	assemble	a	sufficiently	high-quality	refer-
ence	genome	will	likely	be	prohibitive	in	most	cases.	Annotated	ref-
erence	genomes	from	related	species	can	also	be	used	to	identify	
candidate	genes.	However,	 the	Parastichopus parvimensis genome	
that	we	used	 to	align	 raw	sequencing	 reads	 is	not	yet	 annotated	
(Cameron	et	al.,	2009).	Instead,	we	attempted	to	identify	loci	under	
selection	using	 the	purple	 sea	urchin	 genome	 (Strongylocentrotus 
purpuratus;	 Sea	 Urchin	 Genome	 Sequencing	 Consortium,	 2006),	
but	 this	 resulted	 in	 low-scoring	 alignments	with	 RAD	 sequences	
containing	 candidate	 SNPs.	 As	 genomic	 resources	 become	more	
widely	 available	 for	 a	 greater	 number	 of	 organisms,	 future	work	
should	aim	 to	 identify	 the	genomic	basis	of	 loci	putatively	under	
selection.	Moreover,	the	observed	associations	between	allele	fre-
quencies	and	bioclimatic	factors	presented	in	this	study	can	serve	
as	hypotheses	for	further	investigation	into	the	causal	relationship	
between	environmental	conditions	and	adaptive	variation	in	P. cali‐
fornicus and	other	benthic	marine	invertebrate	species	with	experi-
mental	evaluations	of	 fitness	differences	 (Savolainen,	Lascoux,	&	
Merilä,	2013).

A	 second	 limitation	 is	 that	 reduced	 representation	 sequencing	
approaches,	like	RADseq,	sample	a	relatively	small	proportion	of	the	
entire	genome	and	many	loci	under	selection	may	be	missed	due	to	
the	sparse	coverage	of	the	genome	(Lowry	et	al.,	2017).	Given	the	
low	density	of	markers	 sampled	here,	we	did	not	aim	 to	elucidate	
the	 genomic	 mechanisms	 underlying	 local	 adaptation.	 Rather,	 we	
focused	 on	 identifying	 the	 environmental	 features	 that	may	 drive	
spatial	patterns	of	selection	and	should	be	investigated	further.	The	
results	 of	 this	 study	 could	 potentially	 provide	 guidance	 for	 future	
projects	to	capture	the	geographic	distribution	of	adaptive	genetic	
variation	while	minimizing	costs	associated	with	more	intensive	ge-
nomic	sampling	per	individual	(e.g.,	whole-genome	sequencing;	see	
Fuentes-Pardo	&	Ruzzante,	2017).

4.4 | Implications for management and conservation

The	ability	to	detect	putatively	adaptive	genetic	variation	in	wild	
populations	 has	 increased	 attention	 towards	 integrating	 meas-
ures	 of	 adaptive	 genetic	 variation	 into	 conservation	 decision-
making	 processes	 (Flanagan,	 Forester,	 Latch,	 Aitken,	 &	 Hoban,	
2017;	Funk,	McKay,	Hohenlohe,	&	Allendorf,	 2012),	 and	 recent	
studies	 have	 discussed	 the	 importance	 of	 incorporating	 esti-
mates	of	adaptive	potential	 into	marine	reserve	design	(von	der	
Heyden,	2017;	Nielsen	et	 al.,	 2017).	P. californicus is	 a	 commer-
cially	exploited	species,	and	an	understanding	of	the	spatial	pat-
terns	of	adaptive	genetic	differentiation	can	inform	management	
efforts	to	ensure	the	sustainability	of	the	sea	cucumber	fishery	
in	 the	future.	While	sea	cucumbers	are	not	presently	 farmed	 in	
Canada,	 there	 is	 an	 interest	 in	 the	development	of	 aquaculture	
programmes	 for	P. californicus in	 British	 Columbia	 (DFO,	 2014).	
Improved	 knowledge	 about	 local	 adaptation	 has	 important	 im-
plications	 for	 effectively	 managing	 breeding	 programmes	 and	
informing	 the	 foundation	of	 aquaculture	 broodstock	 (Do	Prado	

et	al.,	2018).	Further	insight	into	the	extent	to	which	populations	
are	 locally	 adapted	 to	 environmental	 conditions	 will	 be	 impor-
tant	for	ensuring	that	potentially	maladapted	genotypes	are	not	
introduced	 into	 wild	 populations	 (Conover,	 1998).	 Moreover,	
understanding	 the	 spatial	 distribution	 of	 putatively	 adaptive	
genetic	 variation	 can	 inform	 the	 selection	 of	 specific	 sites	 for	
protection	 within	 marine	 reserves	 to	 maintain	 adaptive	 poten-
tial	and	evolutionary	resilience	of	wild	populations	in	the	face	of	
environmental	 change	 (von	 der	 Heyden,	 2017).	 In	 some	 cases,	
populations	 that	 are	 already	 locally	 adapted	 to	 stressful	 or	 ex-
treme	 environmental	 conditions	might	 be	 important	 sources	 of	
“pre-adapted”	 alleles	 that	 can	 enhance	 the	 resistance	 of	 other	
populations	to	future	environmental	change	(e.g.,	Bay	&	Palumbi,	
2014;	Golbuu,	Gouezo,	Kurihara,	Rehm,	&	Wolanski,	2016).	Our	
study	 did	 not	 identify	 unique	 locally	 adapted	 populations,	 but	
rather	 demonstrated	 the	 potential	 for	 environmental	 selection	
to	 shape	 the	 distribution	 of	 adaptive	 genetic	 variation	 across	
space.	This	can	also	have	 important	 implications	 for	prioritizing	
sites	for	protection,	where	the	level	of	adaptive	genetic	variation	
could	 be	 an	 indicator	 of	 the	 evolutionary	 resilience	 of	 popula-
tions	 (Bonin,	Nicole,	Pompanon,	Miaud,	&	Taberlet,	2007;	Sgrò,	
Lowe,	&	Hoffmann,	2011).	In	the	coastal	region	of	the	northeast-
ern	 Pacific,	 temperature	 and	 heat	 content	 are	 predicted	 to	 in-
crease	 (Abraham	et	al.,	2013;	Foreman	et	al.,	2014)	and	salinity	
is	 predicted	 to	 decrease	 (Foreman	et	 al.,	 2014;	Morrison	 et	 al.,	
2014)	in	the	future.	As	such,	the	spatial	patterns	of	genetic	vari-
ability	observed	 in	 this	 study	can	 inform	conservation	planning	
decisions	 by	 identifying	 for	 protection	 populations	 containing	
higher	 levels	of	segregating	polymorphisms	associated	with	en-
vironmental	 conditions	 (e.g.,	 temperature	 and	 salinity)	 that	 are	
prone	to	change	in	the	future.
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