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Abstract
Understanding the spatial scale of local adaptation and the factors associated with 
adaptive diversity are important objectives for ecology and evolutionary biology, and 
have significant implications for effective conservation and management of wild 
populations and natural resources. In this study, we used an environmental associa-
tion analysis to identify important bioclimatic variables correlated with putatively 
adaptive genetic variation in a benthic marine invertebrate—the giant California sea 
cucumber (Parastichopus californicus)—spanning coastal British Columbia and south-
eastern Alaska. We used a redundancy analysis (RDA) with 3,699 single nucleotide 
polymorphisms (SNPs) obtained using RAD sequencing to detect candidate markers 
associated with 11 bioclimatic variables, including sea bottom and surface condi-
tions, across two spatial scales (entire study area and within subregions). At the 
broadest scale, RDA revealed 59 candidate SNPs, 86% of which were associated with 
mean bottom temperature. Similar patterns were identified when population struc-
ture was accounted for. Additive polygenic scores, which provide a measure of the 
cumulative signal across all candidate SNPs, were strongly correlated with mean bot-
tom temperature, consistent with spatially varying selection across a thermal gradi-
ent. At a finer scale, 23 candidate SNPs were detected, primarily associated with 
surface salinity (26%) and bottom current velocity (17%). Our findings suggest that 
environmental variables may play a role as drivers of spatially varying selection for 
P. californicus. These results provide context for future studies to evaluate the ge-
netic basis of local adaptation in P. californicus and help inform the relevant scales and 
environmental variables for in situ field studies of putative adaptive variation in ma-
rine invertebrates.
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1  | INTRODUC TION

Heterogeneity in environmental conditions imposes differential se-
lection pressures across space, potentially leading to the adaptation 
of populations to local environments (Kawecki & Ebert, 2004). In the 
marine environment, nearshore regions are characterized by steep 
gradients in temperature, salinity and other abiotic factors, due to 
persistent upwelling systems, warming by the air and sun, exposure 
to freshwater run‐off, and pollution from coastal developments 
(Breitburg, Hondorp, Davias, & Diaz, 2009; Foreman, Callendar, 
Masson, Morrison, & Fine, 2014). These factors have the potential 
to maintain adaptive polymorphisms via spatially varying selection 
(Bradbury et al., 2010; Gagnaire, Normandeau, Côté, Hansen, & 
Bernatchez, 2012; Laporte et al., 2016). Evidence of local adaptation 
associated with environmental conditions in marine populations is 
growing, challenging the dogma that a high degree of gene flow pre-
cludes adaptive divergence in the ocean (Bernatchez, 2016; Sanford 
& Kelly, 2011). Empirical studies have identified key environmental 
predictors of adaptive genetic variation across environmental gradi-
ents in marine taxa including corals (Lundgren, Vera, Peplow, Manel, 
& van Oppen, 2013), eels (Babin, Gagnaire, Pavey, & Bernatchez, 
2017; Gagnaire et al., 2012), sticklebacks (Guo, DeFaveri, Sotelo, 
Nair, & Merilä, 2015), lobsters (Benestan et al., 2016), and Pacific 
(Hecht, Matala, Hess, & Narum, 2015) and Atlantic (Jeffery et al., 
2017) salmon.

Marine and coastal environments are subject to rapid changes 
in physical and chemical properties including temperature, salinity, 
water circulation, pH and oxygen concentration (Hoegh‐Guldberg 
et al., 2014), with important consequences for the development 
and survival of organisms inhabiting these regions (e.g., Gobler, 
DePasquale, Griffith, & Baumann, 2014; Kroeker et al., 2013; 
O’Connor et al., 2007). The ability for marine species to adapt to 
novel environmental conditions is increasingly important as unprec-
edented rates of environmental change continue to threaten marine 
biodiversity (Hoegh‐Guldberg, Poloczanska, Skirving, & Dove, 2017; 
Munday, Donelson, & Domingos, 2017). Thus, understanding the 
spatial scale of local adaptation and the factors associated with adap-
tive genetic variation is important for the effective conservation and 
management of wild populations and natural resources (Bradbury et 
al., 2010; Bernatchez et al., 2017; Nielsen, Beger, Henriques, Selkoe, 
& Heyden, 2017; von der Heyden, 2017) and predicting evolutionary 
responses to climate change and environmental disturbances (Bay et 
al., 2017). Quantifying spatial patterns of adaptive genetic variation 
has implications for the spatial management of marine populations, 
and is inherently central to the establishment of marine reserves 
that aim to protect genetic diversity and promote resilience to envi-
ronmental change (von der Heyden, 2017).

In the last decade, several analytical methods have been de-
veloped to detect putatively adaptive loci from genomic data sets, 
making it possible to assess patterns of adaptive genetic variation 
in wild populations (Jensen, Foll, & Bernatchez, 2016; Rellstab, 
Gugerli, Eckert, Hancock, & Holderegger, 2015; Schoville et al., 
2012). Differentiation‐based detections of statistical outliers are 

now commonplace, whereby extreme levels of locus‐specific pop-
ulation genetic differentiation (e.g., FST) indicate that differentiation 
may be driven by adaptive rather than neutral demographic or his-
torical processes (Narum & Hess, 2011). Additionally, environmental 
association analyses (EAAs) directly associate allele frequencies and 
environmental conditions hypothesized to influence local adaptation 
to not only detect genetic variants putatively under selection, but 
also to characterize the environmental conditions contributing to 
adaptive genetic variation (Joost et al., 2007; Rellstab et al., 2015; 
Schoville et al., 2012; Sork et al., 2013). EAAs are especially prom-
ising because they are better able to detect relatively weak signals 
of selection compared to methods based on population differentia-
tion (De Mita et al., 2013; de Villemereuil, Frichot, Bazin, François, & 
Gaggiotti, 2014; Forester, Lasky, Wagner, & Urban, 2018). In particu-
lar, multivariate EAA methods model the effect of a suite of environ-
mental predictors on a large number of genetic loci simultaneously, 
thus minimizing the number of statistical tests. Furthermore, multi-
variate EAA methods are well suited to detect weak multilocus re-
sponses to environmental conditions by modelling the covariance of 
loci in response to environmental conditions (Bourret, Dionne, Kent, 
Lien, & Bernatchez, 2013; Forester et al., 2018; Rellstab et al., 2015).

In this study, we investigated the influence of bioclimatic factors 
on putatively adaptive genetic variation in a benthic marine inver-
tebrate—the giant California sea cucumber (Parastichopus californi‐
cus)—in the northeastern Pacific Ocean. P. californicus undergoes a 
bipartite life cycle: a dispersive pelagic larval stage with a relatively 
long pelagic larval duration (up to 120 days; Lambert, 1997) and a 
relatively sedentary benthic adult stage that occupies rocky, sandy 
and algae‐covered substrates in nearshore regions (Hamel & Mercier 
2008). Commercial harvesting of this species occurs throughout its 
distribution along the Pacific coast of North America. In Canada, 
commercial harvesting of P. californicus is managed as a dive‐only ro-
tational fishery (DFO, 2014). Though sea cucumbers are not farmed 
in Canada, there is an interest to establish aquaculture facilities for 
P. californicus in British Columbia (DFO, 2016). As such, understand-
ing the role of environmental factors as drivers of natural selection 
in this species could help inform management‐based decisions that 
aim to protect adaptive potential for the future. Previous work on 
this species in the same region identified two distinct genetic groups 
using multiple approaches for evaluating population genetic struc-
ture (Xuereb et al., 2018). These groups corresponded to regions 
north and south of Queen Charlotte Sound at the northern tip of 
Vancouver Island (Figure 1), which corroborated patterns of popula-
tion genetic structure observed in other marine species in the same 
region, including the rosethorn rockfish (Sebastes helvomaculatus; 
Rocha‐Olivares & Vetter, 1999) and the bat star (Pisaster miniata; 
Sunday, Popovic, Palen, Foreman, & Hart, 2014). However, the poten-
tial for environmental conditions to influence spatial patterns of ge-
netic variation has not yet been evaluated. Coastal British Columbia 
is predicted to experience decreases in surface salinity as a result 
of increases in freshwater run‐off (Foreman et al., 2014; Morrison, 
Callendar, Foreman, Masson, & Fine, 2014), and increases in surface 
temperature and intensification of surface currents (Foreman et al., 
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2014). Changes in oceanic heat content and thermal stratification 
are likely to influence subsurface conditions in the future as well 
(Abraham et al., 2013), potentially impacting both the pelagic and 
benthic life stages of P. californicus and other marine invertebrates.

Our main objective was to identify the environmental variables 
contributing to spatial patterns of putatively adaptive genetic varia-
tion across sampled locations. We tested for associations between 
allele frequencies at single nucleotide polymorphism (SNP) loci de-
rived from restriction‐site associated DNA sequencing (RADseq) and 
bioclimatic factors predicted to influence local adaptation of sea cu-
cumbers using a multivariate constrained ordination EAA approach 
over two spatial scales: (a) across the entire sampled geographic area 
and (b) within regional groups. We considered candidate loci poten-
tially under selection based on the loadings of SNPs in ordination 
space, and identified the environmental variables most strongly cor-
related with candidate loci. We then evaluated how candidate loci 
collectively varied with the best‐associated environmental condi-
tions across our sampling locations.

2  | METHODS

2.1 | Sampling and laboratory methods

The analyses in this study were performed on the same data pre-
sented in Xuereb et al. (2018). Whereas the previous study retained 
only those SNPs identified as putatively neutral for analyses of pop-
ulation structure and connectivity, we included the full set of filtered 
SNPs (3,699 SNPs) for analyses of adaptive genetic variation in this 
study. Sample collections, sequencing methods and filtering steps 
are described here in brief but we refer to Xuereb et al. (2018) for 
full details.

Tissue samples were collected from adult Parastichopus califor‐
nicus by SCUBA from 24 sampling locations along the coastline of 
British Columbia (BC) and southeastern Alaska (Figure 1), with the 
number of individual specimens (spike clips) collected from each lo-
cation ranging between 30 and 41. These sites capture latitudinal 
variability along a linear coastline as well as conditions within ba-
sins between Vancouver Island and the BC mainland and in more 
remote regions (Figure 1). Whole genomic DNA was extracted from 

individual tissue samples using the DNeasy spin column protocol 
(QIAGEN, Toronto, ON, Canada). Libraries were prepared using the 
RAD sequencing protocol of Poland, Brown, Sorrells, and Jannink 
(2012), and single‐end sequencing was performed on the Ion Proton™ 
platform (Life Technologies, Grand Island, NY) at the core sequenc-
ing facility at the Institut de Biologie Intégrative et des Systèmes 
at Université Laval (Québec, Canada). Raw reads were aligned to 
the genome of a closely related species (Parastichopus parvimensis; 
Cameron, Samanta, Yuan, He, & Davidson, 2009) and a catalogue of 
putative loci was built with stacks version 1.4.4 (Catchen, Hohenlohe, 
Bassham, Amores, & Cresko, 2013), allowing for a maximum of three 
mismatches between loci (n = 3). Initial filtering steps performed in 
stacks included retaining SNPs with a minimum stack depth of four 
(m = 4), present in at least 16 sampling locations (one‐third of the 
total number of locations), and found in at least 70% of individuals 
within each sampling location. We subsequently removed loci ex-
hibiting a deficiency or excess of heterozygosity (Ho > 0.6 in at least 
one site; FIS>0.5 or <−0.5), as well as loci with either a minor allele 
frequency (MAF) less than 0.01 across all sites or less than 0.1 within 
at least one site. We also excluded one locus per pair of loci in high 
linkage disequilibrium (LD) (R2 > 0.8) from the full set of markers, as 
well as samples with more than 30% missing data. See Xuereb et al. 
(2018) for a full description of the parameters used to filter the data 
set and the number of loci removed after each filtering step.

2.2 | Environmental predictors

We considered a total of 14 environmental variables including tem-
perature, salinity, current velocity, dissolved oxygen concentration 
and chlorophyll concentration at each of the 24 sampling locations 
(Supporting Information Table S1) as potential drivers of spatially 
varying selection. We used monthly surface temperature data (°C) 
between 2002 and 2010 and monthly surface salinity data (psu) be-
tween 1955 and 2006 from the marspec (Sbrocco & Barber, 2013) 
database at a resolution of 1 km (originally derived from the World 
Oceans Atlas 2009 (Antonov et al., 2010) and Aqua‐MODIS (http://
oceancolor.gsfc.nasa.gov/), respectively). We included the mean, 
minimum and maximum monthly measurements for both surface 
temperature and salinity, as selection may be influenced by both 

F I G U R E  1   (a) Mean bottom 
temperature (data from bio‐oracle; 
Tyberghein et al., 2012) and (b) mean 
surface salinity (data from marspec; 
Sbrocco & Barber, 2013) in the 
coastal region of British Columbia and 
southeastern Alaska; black dots indicate 
P. californicus sampling locations. The 
dashed line in (a) indicates the location of 
the genetic break identified in Xuereb et 
al. (2018) [Colour figure can be viewed at 
wileyonlinelibrary.com]

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/
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average and extreme climatic conditions. Using a principal compo-
nents analysis (PCA), sea surface salinity and sea surface tempera-
ture (mean, minimum and maximum) were reduced to three principal 
components (PCs) that explained 97.5% of the total variation: PC1 
was negatively correlated with sea surface salinity; PC2 was posi-
tively correlated with mean and maximum sea surface temperature; 
PC3 was negatively correlated with minimum surface temperature 
(Table 1). These PC axes were subsequently used as predictor vari-
ables representing sea surface salinity (PC1) and sea surface tem-
perature (PC2 and PC3) in the constrained ordinations (see below). 
As environmental conditions at the bottom can also influence local 
adaptation in populations of benthic organisms, we additionally 
included data for bioclimatic variables representing conditions at 
bottom depth, which were obtained from the bio‐oracle database 
(Tyberghein et al., 2012; Supporting Information Table S2). These 
data were assembled at a coarser resolution (9.2 km) compared to 
the marspec data. We evaluated the pairwise correlation values be-
tween all bio‐oracle predictors and excluded variables demonstrat-
ing high correlation with other bioclimatic variables. Significance 
of the correlations was assessed based on p‐values corrected for 
multiple tests using the Benjamini‐Hochberg (BH) method (p < 0.05) 
(Benjamini & Hochberg, 1994). Lastly, we assessed multicollinear-
ity between all predictor variables prior to performing constrained 
ordinations (see below), using the variance inflation factor (VIF). 
Predictor variables with VIF > 10 were excluded, and all predictors 
were scaled and centred prior to analyses. marspec and bio‐oracle 
data were obtained using the sdmpredictors version 0.2.5 package 
(Bosch, 2017) in r (R Core Team 2016).

2.3 | Environmental association analysis: 
constrained ordinations

We performed a redundancy analysis (RDA) to detect candidate 
adaptive loci exhibiting strong associations with the environmental 
variables hypothesized to influence selection. RDA is an extension 
of linear regression in which both the predictor and the response 

variables are multivariate. This approach performs a PCA on the re-
sponse table (here, the matrix of allele frequencies) while constrain-
ing the PCA axes as linear combinations of the predictor variables 
(i.e., environmental variables). Allele frequencies were Hellinger 
transformed prior to running the RDA (Legendre & Gallagher, 2001). 
All RDAs were performed using the rda function in the vegan 2.4‐5 
(Oksanen et al., 2017) package in r.

We estimated the proportion of variance in allele frequencies at 
3,699 SNPs across all 24 sampling locations that could be explained 
by environmental predictors based on the adjusted R2. We used an 
analysis of variance (ANOVA) with 1,000 permutations to evaluate 
the significance of the global RDA. Then, we identified candidate loci 
based on locus scores (i.e., the loading of each locus in ordination 
space) that were ±3 SD from the mean loading (following Forester et 
al., 2018) on the first two constrained ordination axes. We identified 
the environmental variables exhibiting the strongest associations 
with each candidate adaptive locus using a Pearson’s correlation (r).

To further investigate the spatial distribution of putatively 
adaptive polymorphisms across our sampling locations, we evalu-
ated the MAF at the candidate loci most strongly correlated with 
environmental variables within each of the 24 sampling locations. 
For this, we used an arbitrary cut‐off of r = 0.65 to select candidate 
loci showing the strongest correlations with environment. For each 
locus that met this criterion, we performed a linear regression to as-
sess the relationship between MAF and the value of the best‐asso-
ciated environmental variable across sampling locations. We used 
a BH p‐value adjustment to correct for multiple tests (Benjamini & 
Hochberg, 1994).

In structured populations, genetic signatures of selection may 
be confounded with signatures of neutral (i.e., historical or de-
mographic) processes that may be falsely interpreted as selection 
(Excoffier, Hofer, & Foll, 2009). Corrections for population structure 
are thus recommended to control for signals generated by neutral 
processes, although these corrections can also be overly conser-
vative in some cases by inadvertently removing true signals of se-
lection (Forester et al., 2018). Nonetheless, we performed a second 
RDA in which we account for population structure to determine its 
effect on detections of candidate loci. We used a spatial eigenfunc-
tion analysis to account for population structure following a similar 
approach to that described in Forester et al. (2018). We computed 
distance‐based Moran’s eigenvector maps (dbMEMs) based on the 
Euclidean distances between sampling locations, which decompose 
the spatial relationships among sampled sites into a set of spatial 
variables (Dray, Legendre, & Peres‐Neto, 2006). We used the r 
package adespatial version 0.1‐0 (Dray et al., 2017) to compute db-
MEMs. First, a PCA was performed on Hellinger‐transformed allele 
frequencies across all 3,699 loci and retained the first three PC axes 
based on visualization of a screeplot. We performed a RDA with the 
retained PC axes as the response variables and all dbMEMs as the 
explanatory variables, and subsequently used a forward selection 
procedure (Blanchet, Legendre, & Borcard, 2008) to identify sig-
nificant dbMEM variables. The significant dbMEMs were then used 
as conditioning variables in a partial RDA and candidate SNPs after 

TA B L E  1  Factor loadings of the marspec bioclimatic variables on 
the first three principal component axes with per cent of variance 
explained by each axis in parentheses

Bioclimatic 
variable PCA1 (60%) PCA2 (24%) PCA3 (14%)

SSS annual mean −0.493 0.267 −0.157

SSS monthly min −0.486 0.282 −0.044

SSS monthly max −0.481 0.279 −0.224

SST annual mean 0.368 0.566 −0.113

SST coldest ice 
free month

0.322 0.144 −0.836

SST warmest ice 
free month

0.226 0.656 0.460

Note. Loadings represent correlation coefficients between the variables 
and the PC axes.
SSS: sea surface salinity; SST: sea surface temperature.
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correcting for population structure were detected using the same 
methods as described previously.

2.4 | Comparison with differentiation‐based 
outlier detection

In addition to RDA, we used a population differentiation‐based 
approach to detect candidate loci under selection to compare de-
tections across methods. Specifically, we used Bayescan, which es-
timates the posterior probability of SNPs under selection based on 
FST values (Foll & Gaggiotti, 2008). This approach was used previ-
ously on the same data set to retain only putatively neutral mark-
ers for analyses of population genetic structure, using prior odds of 
10,000, a q‐value threshold of 0.01, and with 10,000 iterations and 
200,000 burn‐in steps (see Xuereb et al., 2018). Here, we retained 
the 55 SNPs (out of a total of 3,699 SNPs) identified as being under 
divergent selection to determine the proportion of candidate mark-
ers detected by both methods.

2.5 | Additive polygenic scores

We used an approach based on additive polygenic scores for each 
individual to evaluate the cumulative effect of all candidate loci in 
response to environmental conditions (Gagnaire & Gaggioti 2016), 
following Babin et al. (2017). We first assessed the extent of LD 
based on R2 values between all pairs of loci identified as being under 
selection to ensure that candidate loci were not strongly linked. 
Polygenic scores were calculated by first identifying alleles across all 
candidate loci that were associated with increasing values of a given 
environmental variable (e.g., mean bottom temperature) based on 
the direction of correlation between allele frequencies and the envi-
ronmental condition. A score was calculated for each individual sea 
cucumber by summing the total number of favoured alleles within 
a particular environment across all candidate loci. Then, we evalu-
ated the relationship between individual additive polygenic scores 
and environmental variables independently using both a linear and 
a quadratic model, and determined the best‐fit model based on the 
lowest Akaike information criterion (AIC) value. We performed the 
polygenic score analysis separately using the candidate loci de-
tected without correction for population structure (by both RDA and 
Bayescan) and with correction for population structure (by partial 
RDA), and compared the two approaches.

2.6 | Candidate SNPs under selection at a finer 
spatial scale

We performed a second RDA using the same methods as described 
above within north and south regional areas independently (with no 
correction for population structure) to determine whether selec-
tion pressures vary between whole‐coast and within‐region scales. 
These two areas consisted each of 12 sampling sites located north 
and south of Queen Charlotte Sound identified as belonging to two 
distinct genetic clusters in Xuereb et al. (2018) (Figure 1).

3  | RESULTS

3.1 | Sequencing and marker filtering

On average, 2.75 million raw reads per sample were obtained from 
RAD sequencing and aligned with the Parastichopus parvimensis ge-
nome. A total of 94,842 SNPs were retained from the catalogue of 
~1.81 million putative loci. Subsequent filtering steps based on mini-
mum presence, observed heterozygosity, and local and global minor 
allele frequencies retained 4,340 SNPs. After excluding one locus 
from each pair in LD (R2 > 0.8), a total of 3,699 SNPs were retained, 
in 717 individuals across the 24 sampling locations, for subsequent 
analyses. Further details are provided in Xuereb et al. (2018).

3.2 | Environmental predictors

Several significant correlations were observed between pairs of the 
bio‐oracle environmental variables (Supporting Information Table 
S2). As such, we opted to exclude three variables: “bottom dissolved 
oxygen concentration,” “bottom chlorophyll concentration” and 
“maximum temperature at the bottom” from our set of predictors. All 
of the remaining predictor variables, including PC axes representing 
surface salinity and surface temperature, had a VIF < 10, both at the 
broad scale (i.e., among all 24 sites) and within the south region, indi-
cating no issues of multicollinearity among the predictors (Table 2). 
We excluded bottom current velocity from the analysis within the 
north region as it had a VIF > 10.

3.3 | Environmental association analysis: 
constrained ordinations

The RDA with all 3,699 SNPs including all 24 sampling locations was 
globally significant (ANOVA F(8,15) = 1.26, p = 0.001) and explained 
about 8% of the variance (adjusted R2 = 0.083) (Figure 2a). Only the 
first RDA axis was significant (p = 0.002). However, we considered 

TA B L E  2  Variance inflation factor (VIF) for predictor variables 
included in the constrained ordinations at the broad scale (VIFall) 
and among the sampling sites within the south (VIFsouth) and north 
(VIFnorth) groups, excluding variables with VIF>10

Environmental 
variables VIFall VIFsouth VIFnorth

PC1 2.06 2.19 1.63

PC2 1.19 1.98 2.47

PC3 1.17 1.81 1.45

Current velocity (B) 2.13 1.97 —

Mean temperature (B) 1.40 3.65 1.26

Minimum tempera-
ture (B)

2.66 2.43 2.03

Mean salinity (B) 1.30 2.85 2.07

Current velocity (S) 1.53 1.96 2.19

Note. (B) = bottom and (S) = surface. 
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candidate loci on the first two constrained canonical axes, which 
explained 14.2% and 4.15% of the genetic variation, respectively. 
Based on locus scores that were ±3 SD from the mean loadings, 59 
loci were identified as candidates (51 candidate loci were detected 
on RDA axis 1 and 8 candidate loci were detected on RDA axis 2; 
Figure 2b). The majority of candidate loci (51; 86%) were associated 
with mean bottom temperature. Of the remaining candidate loci, 3 

(5%) were associated with mean bottom salinity, 3 (5%) were associ-
ated with bottom current velocity, 1 (2%) was associated with mini-
mum bottom temperature, and 1 (2%) was associated with mean and 
maximum surface temperature (PC2).

Overall, sixteen out of the 59 candidate loci identified by RDA 
exhibited correlation coefficients (r) greater than 0.65 (either pos-
itively or negatively correlated) with environment, all of which 

F I G U R E  2  Redundancy analysis (RDA) performed with 3,699 SNPs (grey filled circles in the centre) and eight environmental variables 
(blue arrows) on the first two constrained ordination axes (a) with no correction for population structure and (c) with correction for 
population structure by conditioning on significant dbMEMs. Candidate loci detected based on locus scores ±3 SD from the mean loading 
on each RDA axis are shown in zoomed‐in plots for (b) the uncorrected RDA and (d) the RDA with correction for population structure, and 
coloured by the most highly correlated environmental explanatory variable. SNPs not identified as candidates are shown in grey; blue arrows 
represent the environmental predictors correlated with candidates loci [Colour figure can be viewed at wileyonlinelibrary.com]
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were associated with mean bottom temperature (Supporting 
Information Table S3). In all but one of these 16 loci, minor allele 
frequencies were negatively correlated with mean bottom tem-
perature, indicating that MAF at these candidate loci is lower in 
sampling locations with higher bottom temperatures (Figure 3). 
The relationship between MAF and temperature at sampling loca-
tions was significant for all loci after correcting for multiple tests 
(Table 3).

Two significant spatial variables (dbMEM1 and dbMEM2) 
were identified using forward selection and were retained 
as conditioning variables in a partial RDA to detect candidate 
loci while correcting for broad‐scale population structure. The 
partial RDA was not significant overall (ANOVA F(8,13) = 1.03, 
adjusted R2 = 0.009, p = 0.29), likely as a result of the large num-
ber of neutral SNPs contributing to the total genetic variation 
(Figure 2c). Nevertheless, we identified candidate SNPs in this 
partial model using the same threshold as above (±3 SD from 
the mean loading). Using this approach, 33 outliers were de-
tected on the first two constrained axes: 26 on the first RDA 
axis and seven on the second RDA axis (Figure 2d). Of these 
outlier loci, 17 (52%) were associated with mean bottom tem-
perature; 4 (12%) each with surface salinity (PC1) and minimum 
surface temperature (PC3); 3 (9%) each with bottom current 
velocity and bottom salinity; and 2 (6%) with minimum bottom 
temperature. Considering only the candidate markers that were 
associated with mean bottom temperature, as these made up the 
majority of candidates, 14 out of the 17 outlier SNPs detected 
in the partial RDA were also detected without any correction for 
population genetic structure.

3.4 | Comparison with differentiation‐based 
outlier detection

Of the 59 candidate SNPs under selection identified by RDA and the 
55 candidate SNPs identified by Bayescan, a total of 43 detections 
overlapped between the two methods. Thus, across both methods, 
a combined total of 71 unique candidate SNPs were detected at the 
broadest spatial scale.

3.5 | Additive polygenic scores

Pairwise LD between all detected candidate loci was weak on av-
erage (mean R2 = 0.04) with 96% of pairwise R2 values below 0.2 
(all pairwise R2 values are shown in Supporting Information Table 
S4), suggesting that candidate loci are not in strong LD. We first 
evaluated the relationship between additive polygenic scores for 
each individual sea cucumber across the 71 putatively adaptive 
loci detected by both methods described above, and mean bot-
tom temperature. Additive polygenic scores increased signifi-
cantly with increasing mean bottom temperature (linear model: 
R2 = 0.251, p < 2.2 × 10−16) (Figure 4a). The quadratic model had 
only a slightly lower AIC score (quadratic model: AIC = 5,393.34; 
linear model: AIC = 5,394.20) and explained a similar proportion 
of variation in allele frequencies at candidate markers (quadratic 
model: R2 = 0.253, p < 2.2 × 10−16) compared to a linear model 
(Supporting Information Figure S1a). We performed the analysis 
again using polygenic scores calculated over the 33 candidate loci 
that were detected by the partial RDA after correcting for popula-
tion structure and observed a similar significant positive association 

F I G U R E  3  Minor allele frequency (MAF) as a function of mean 
bottom temperature (°C) for each of the 16 SNPs exhibiting the 
strongest correlation (r > 0.65) with bottom temperature. Solid lines 
represent the fit from a linear regression for each candidate SNP 
[Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  3  Linear regression statistics for each of the candidate 
loci showing strong correlation (r > 0.65) with mean bottom 
temperature

SNP ID Adjusted R2 F P Padj

18502_23 0.49 23.15 <0.0001 0.0002

19470_22 0.44 18.85 0.0003 0.0003

23125_37 0.45 20.18 0.0002 0.0002

25272_11 0.46 20.54 0.0002 0.0002

26371_22 0.37 14.54 0.0010 0.0010

28612_55 0.52 25.49 <0.0001 0.0001

32489_65 0.59 34.07 <0.0001 <0.0001

37255_35 0.43 18.42 0.0003 0.0003

50798_43 0.56 30.85 <0.0001 <0.0001

51085_60 0.49 23.51 <0.0001 0.0002

51635_56 0.52 25.51 <0.0001 0.0001

51843_53 0.47 21.69 0.0001 0.0002

5610_31 0.47 21.14 0.0001 0.0002

57735_28 0.40 16.28 0.0006 0.0006

57938_62 0.56 30.02 <0.0001 <0.0001

6883_27 0.61 36.64 <0.0001 <0.0001

Note. Adjusted P‐values (Padj) are based on a Benjamini‐Hochberg correc-
tion for multiple tests.
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between polygenic scores and mean bottom temperature, albeit 
with lower statistical support given the reduced number of loci 
(R2 = 0.133, p < 2.2 × 10−16) (Figure 4b and Supporting Information 
Figure S1b). AIC scores for the quadratic and linear models were 
similar (quadratic model: AIC = 5,393.34; linear model: 5,394.20).

3.6 | Candidate SNPs under selection at a finer 
spatial scale

Within the north region, the RDA was not significant (ANOVA 
F(7,4) = 0.95, p = 0.93) and the proportion of variance explained by 
the predictor variables was negligible (adjusted R2 = −0.034); thus, 
we did not consider candidate loci and associations with environ-
mental factors within this region. In the south region, the proportion 
of total genetic variance explained by the predictor variables was 
similar to that observed for the total data set (adjusted R2 = 0.07), 
and the global RDA was significant (ANOVA F(8,3) = 1.11, p = 0.017) 
(Figure 5a). As with the broad coastal scale, we considered candi-
date loci on the first two constrained axes, which explained 13.4% 
and 10.2% of the genetic variance, respectively. We detected 23 
candidate loci: 11 on the first RDA axis and 12 on the second RDA 
axis (Figure 5b). Of these candidate loci, 6 (26%) were associated 
with surface salinity (PC1), 4 (17%) were associated with bottom cur-
rent velocity, 3 (13%) were associated with minimum bottom tem-
perature, 3 (13%) were associated with mean bottom temperature, 
3 (13%) were associated with bottom salinity, 2 (7%) were associ-
ated with PC3 (minimum surface temperature), 1 (4%) was associ-
ated with PC2 (mean and maximum bottom temperature), and 1 (4%) 

was associated with surface current velocity. At the regional scale, 
locus‐specific FST values were very low (maximum FST = 0.005) and 
Bayescan did not detect FST outliers under divergent selection at this 
scale with a q‐value threshold of 0.01.

4  | DISCUSSION

In this study, we investigated the influence of environmental features 
as potential drivers of adaptive divergence in a benthic marine spe-
cies, the giant California sea cucumber (Parastichopus californicus). The 
primary question we asked was: What are the environmental condi-
tions driving differentiation at putatively adaptive genetic loci? Using 
a multivariate EAA, we identified a subset of candidate loci from a 
data set of 3,699 SNPs derived from RAD sequencing exhibiting as-
sociations with bioclimatic variables hypothesized to influence spa-
tially varying selection in benthic marine organisms. We also used an 
approach based on additive polygenic scores to assess the relation-
ship between candidate markers collectively and mean bottom tem-
perature, which was identified as an important predictor of genetic 
variation at putative loci under selection, across sampling locations. 
Moreover, different genotype‐environment associations were identi-
fied within the south region, compared to the entire geographic range 
included in our analyses, implying that selection pressures may differ 
across spatial scales. The results of these analyses imply that envi-
ronmental conditions, especially bottom temperature and/or surface 
salinity, may play important roles as drivers of spatial patterns of puta-
tive adaptive genetic variation that could influence local adaptation.

F I G U R E  4  Relationship between individual additive polygenic scores calculated (a) across 71 candidate SNPs identified by RDA with 
no correction for population structure and Bayescan and (b) across 33 candidate SNPs identified by RDA after correcting for population 
structure, and the mean bottom temperature across sampling locations. The solid line represents the regression line from the linear model, 
and the shaded area represents the 95% confidence interval. Each dot represents an individual sea cucumber [Colour figure can be viewed 
at wileyonlinelibrary.com]
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Similar to other studies using EAA approaches to detect candi-
date loci under selection in marine systems (e.g., Bay & Palumbi, 2014; 
Benestan et al., 2016; De Wit & Palumbi, 2013; van Wyngaarden et 
al.., 2017), we identified a subset of SNPs showing strong associa-
tions with environmental factors. A larger set of candidate loci (59) 
was detected across all 24 sampling locations compared to within the 
south region alone (23) using RDA. In our study, restricted gene flow 
associated with ocean current circulation between the north and 
south subregions (Xuereb et al., 2018) may facilitate divergent se-
lection at this broad spatial scale. Though this previous study found 
significant, albeit weak substructure within subregions (AMOVA, 
FST within regions = 0.002, p = 0.001), the detection of outlier SNPs 
within the south region independently suggests that adaptive dif-
ferentiation may indeed occur in the presence of considerable gene 
flow (Yeaman & Otto, 2011).

4.1 | Environmental drivers of adaptive 
differentiation

Our results suggest that sea bottom temperature is an important 
predictor of genetic variation at candidate loci over a broad spatial 
scale and thus may be a potential driver of spatially varying se-
lection for P. californicus. Sea bottom temperature represents the 
thermal environment experienced by the benthic life stage and may 
thus be a selective agent acting on settlers and/or adults. Indeed, 
other studies have demonstrated that temperature is a significant 
determinant of adaptive differentiation among populations or of 

clinal patterns of adaptive genetic structure in other marine species 
(Stanley et al., 2018), such as Atlantic cod exhibiting parallel clines 
in variation on either side of the Atlantic Ocean (Bradbury et al., 
2010), as well as in other marine invertebrates including purple sea 
urchins (Strongylocentrotus purpuratus) spanning a latitudinal gradi-
ent from the Pacific coast of Canada to Baja California (Pespeni 
& Palumbi, 2013), reef‐building corals (Acropora hyacinthus) occu-
pying pools with different thermal conditions in the south Pacific 
Ocean (Bay & Palumbi, 2014; Palumbi, Barshis, Traylor‐Knowles, & 
Bay, 2014) and American lobster inhabiting spatially varying tem-
perature regimes in the Northwest Atlantic ocean (Benestan et al., 
2016). It is possible that temperature may not be the direct causa-
tive agent of selection, but instead adaptation may be directly at-
tributable to other variables that are correlated with temperature. 
Nevertheless, variability in water temperature is known to drive 
divergence in marine systems by selecting on thermal tolerance 
at multiple life history stages, affecting traits related to growth 
(Yanick, Heath, & Heath, 2003), survival (Kuo & Sanford, 2009; 
Osovitz & Hoffman, 2005; Palumbi et al., 2014) and reproduction 
(Pardo & Johnson, 2005).

The strong positive correlation observed between individual 
polygenic scores calculated across all candidate loci and mean bot-
tom temperature is consistent with spatially varying selection across 
a temperature gradient, where different alleles are maintained 
in different thermal environments. A quadratic model did not de-
scribe the relationship between polygenic scores and temperature 
considerably better than a linear model, implying that the strength 

F I G U R E  5   (a) Redundancy analysis (RDA) performed within the south region with 3,699 SNPs (grey filled circles in the centre) and eight 
environmental variables (blue arrows) on the first two constrained ordination axes; (b) zoomed-in plot showing candidate loci detected based 
on locus scores ±3 SD from the mean loading on each RDA axis coloured by the most highly correlated environmental explanatory variable. 
In (b), SNPs not identified as candidates are shown in grey; blue arrows represent the environmental predictors correlated with candidates 
loci [Colour figure can be viewed at wileyonlinelibrary.com]
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of selection is relatively constant across the temperature gradient, 
though the number of candidate loci may limit our capacity to de-
tect minor differences in selection strength. It is important to note 
that the interpretation of the role of polygenic selection may be 
somewhat biased since we cannot completely dismiss the possibil-
ity that some candidate loci are physically linked without a refer-
ence genome. Yet, the lack of evidence for strong statistical LD is 
suggestive that these markers are likely not physically linked. We 
also observed that the major allele showed evidence of approach-
ing fixation at high temperatures for 15 of the 16 loci most strongly 
associated with bottom temperature (MAF close to 0), with the 
minor allele segregating at low to intermediate frequencies in cold 
temperatures; only 1 locus showed the opposite pattern. This could 
imply that, at least for the loci most strongly associated with bottom 
temperature, the strength of selection may be higher in warmer tem-
peratures. In contrast, higher levels of polymorphism in cooler sites 
may be maintained via several mechanisms, including spatial and/or 
temporal balancing selection (Bergland, Behrman, O’Brien, Schmidt, 
& Petrov, 2014; Bernatchez, 2016). Better characterization of the 
relative strength of selection across the temperature gradient would 
benefit from a greater number of candidate loci, and disentangling 
the selective agents driving adaptive differentiation requires exper-
imental validation of allelic effects, combined with functional infor-
mation about the phenotypic impact of loci involved (e.g., annotated 
genomic resources). Additionally, increased knowledge of the demo-
graphic and environmental patterns over time (e.g., joint time‐series 
data on temperature and allele frequency dynamics) would improve 
our understanding of changes in allele frequencies in response to 
changing environmental conditions.

Within the south region, surface salinity and bottom current 
velocity were the most strongly associated environmental predic-
tors of genetic variation at candidate loci, given both the number 
of candidate loci associated with environmental predictors and 
the strength of correlations. Surface salinity may be influenced by 
freshwater input from coastal regions, which could produce a se-
lective gradient over relatively small spatial scales (Bible & Sanford, 
2016). In this particular region, the Fraser River discharges fresh-
water into the Salish Sea, potentially leading to localized decreases 
in sea surface salinity, whereas salinity is more homogeneous in 
the north area (Figure 1b). Echinoderms in particular may be sen-
sitive to salinity stress as a result of their water vascular system 
and poor ion regulation capabilities (Binyon, 1972; Russell, 2013; 
Stickle & Diehl, 1987). Additionally, as reduced ocean circula-
tion can generate hypoxic conditions in the benthos (Matear et 
al., 2000G), variability in current velocities may result in spatial 
variation in dissolved oxygen concentrations. These factors could 
potentially lead to adaptive divergence in physiological traits to 
cope with stressful conditions and should be investigated further.

4.2 | Correcting for population structure

An important concern in statistical approaches that identify candi-
date loci under selection is: To what extent do detected loci reflect 

a true adaptive signal vs. one caused primarily by demographic or 
historical processes? On the one hand, methods that correct for 
population genetic structure can help eliminate potentially spuri-
ous detections of candidate loci with allele frequency patterns 
that resemble selection but are caused by neutral processes (de 
Villemereuil et al., 2014; Excoffier et al., 2009). On the other hand, 
corrections for spatial structure may be too conservative, poten-
tially removing true adaptive signals and resulting in an overall loss 
of power to detect loci under selection (Forester et al., 2018). This is 
because selection also plays a fundamental role in generating spatial 
patterns of population genetic structure (Charlesworth, Nordborg, & 
Charlesworth, 1997), and when population structure is confounded 
with environmental variables driving local adaptation, correcting for 
population structure can effectively eliminate the signal of selec-
tion one is aiming to identify (Forester et al., 2018; Yeaman et al., 
2016). Indeed, in a simulation‐based study that tested the perfor-
mance of EAA methods, Forester et al. (2018) found that RDAs that 
did not correct for population structure actually performed better 
than those that included spatial variables. Specifically, they showed 
that false‐positive rates (FPRs) were elevated and true‐positive 
rates (TPRs) decreased considerably when correcting for population 
genetic structure, whereas RDAs that did not include such a cor-
rection exhibited low FPRs (and high TPRs) even when simulated de-
mographic scenarios represented refugial expansions that covaried 
with the environmental gradient.

In our study region, previous work identified significant popula-
tion structure, splitting north and south regional groups along the 
BC continental shelf (Xuereb et al., 2018), and thus, disentangling 
true environmental effects from historical or demographic pro-
cesses is challenging. However, results obtained from an analysis 
with no correction for population structure are comparable to those 
obtained when using a more conservative approach that corrects for 
population structure (although with fewer candidate loci overall and 
a slightly weaker relationship between candidate loci and mean bot-
tom temperature when the correction is applied). This implies that 
correcting for population structure may indeed exclude loci that 
are potentially under selection. Nonetheless, the observation that 
bottom temperature remains a notable predictor of genetic variation 
across candidate loci even after accounting for population structure 
lends support for an effect of environmental selection driven by bot-
tom temperature. As such, bottom temperature has likely contrib-
uted to driving divergence between P. californicus populations and 
may continue to do so as ocean temperatures shift.

4.3 | Limitations and future directions

The lack of genomic resources, such as annotated reference ge-
nomes, for P. californicus and echinoderms more broadly, presents 
a challenge for identifying candidate genes underlying observed 
relationships. The availability of an annotated reference genome 
would allow matching of potential candidate loci to the genomic 
regions under selection and gives insights into the specific genes 
involved in local adaptation (Manel et al., 2016). The vast majority 
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of nonmodel systems will not have such resources readily available 
and the cost and time to assemble a sufficiently high‐quality refer-
ence genome will likely be prohibitive in most cases. Annotated ref-
erence genomes from related species can also be used to identify 
candidate genes. However, the Parastichopus parvimensis genome 
that we used to align raw sequencing reads is not yet annotated 
(Cameron et al., 2009). Instead, we attempted to identify loci under 
selection using the purple sea urchin genome (Strongylocentrotus 
purpuratus; Sea Urchin Genome Sequencing Consortium, 2006), 
but this resulted in low‐scoring alignments with RAD sequences 
containing candidate SNPs. As genomic resources become more 
widely available for a greater number of organisms, future work 
should aim to identify the genomic basis of loci putatively under 
selection. Moreover, the observed associations between allele fre-
quencies and bioclimatic factors presented in this study can serve 
as hypotheses for further investigation into the causal relationship 
between environmental conditions and adaptive variation in P. cali‐
fornicus and other benthic marine invertebrate species with experi-
mental evaluations of fitness differences (Savolainen, Lascoux, & 
Merilä, 2013).

A second limitation is that reduced representation sequencing 
approaches, like RADseq, sample a relatively small proportion of the 
entire genome and many loci under selection may be missed due to 
the sparse coverage of the genome (Lowry et al., 2017). Given the 
low density of markers sampled here, we did not aim to elucidate 
the genomic mechanisms underlying local adaptation. Rather, we 
focused on identifying the environmental features that may drive 
spatial patterns of selection and should be investigated further. The 
results of this study could potentially provide guidance for future 
projects to capture the geographic distribution of adaptive genetic 
variation while minimizing costs associated with more intensive ge-
nomic sampling per individual (e.g., whole‐genome sequencing; see 
Fuentes‐Pardo & Ruzzante, 2017).

4.4 | Implications for management and conservation

The ability to detect putatively adaptive genetic variation in wild 
populations has increased attention towards integrating meas-
ures of adaptive genetic variation into conservation decision‐
making processes (Flanagan, Forester, Latch, Aitken, & Hoban, 
2017; Funk, McKay, Hohenlohe, & Allendorf, 2012), and recent 
studies have discussed the importance of incorporating esti-
mates of adaptive potential into marine reserve design (von der 
Heyden, 2017; Nielsen et al., 2017). P. californicus is a commer-
cially exploited species, and an understanding of the spatial pat-
terns of adaptive genetic differentiation can inform management 
efforts to ensure the sustainability of the sea cucumber fishery 
in the future. While sea cucumbers are not presently farmed in 
Canada, there is an interest in the development of aquaculture 
programmes for P. californicus in British Columbia (DFO, 2014). 
Improved knowledge about local adaptation has important im-
plications for effectively managing breeding programmes and 
informing the foundation of aquaculture broodstock (Do Prado 

et al., 2018). Further insight into the extent to which populations 
are locally adapted to environmental conditions will be impor-
tant for ensuring that potentially maladapted genotypes are not 
introduced into wild populations (Conover, 1998). Moreover, 
understanding the spatial distribution of putatively adaptive 
genetic variation can inform the selection of specific sites for 
protection within marine reserves to maintain adaptive poten-
tial and evolutionary resilience of wild populations in the face of 
environmental change (von der Heyden, 2017). In some cases, 
populations that are already locally adapted to stressful or ex-
treme environmental conditions might be important sources of 
“pre‐adapted” alleles that can enhance the resistance of other 
populations to future environmental change (e.g., Bay & Palumbi, 
2014; Golbuu, Gouezo, Kurihara, Rehm, & Wolanski, 2016). Our 
study did not identify unique locally adapted populations, but 
rather demonstrated the potential for environmental selection 
to shape the distribution of adaptive genetic variation across 
space. This can also have important implications for prioritizing 
sites for protection, where the level of adaptive genetic variation 
could be an indicator of the evolutionary resilience of popula-
tions (Bonin, Nicole, Pompanon, Miaud, & Taberlet, 2007; Sgrò, 
Lowe, & Hoffmann, 2011). In the coastal region of the northeast-
ern Pacific, temperature and heat content are predicted to in-
crease (Abraham et al., 2013; Foreman et al., 2014) and salinity 
is predicted to decrease (Foreman et al., 2014; Morrison et al., 
2014) in the future. As such, the spatial patterns of genetic vari-
ability observed in this study can inform conservation planning 
decisions by identifying for protection populations containing 
higher levels of segregating polymorphisms associated with en-
vironmental conditions (e.g., temperature and salinity) that are 
prone to change in the future.

ACKNOWLEDG EMENTS

We gratefully acknowledge those involved in sample collections, 
especially Nicholas Duprey, Dan Curtis, Aaron Eger and Lynn 
Lee (Fisheries and Oceans Canada), Isabelle Côté (Simon Fraser 
University), Mike Donnellan, Kyle Hebert and Jeff Meucci (Alaska 
Department of Fish and Game). We thank Cécilia Hernandez, Brian 
Boyle and Gaetan Légaré (Université Laval) for laboratory assistance 
and sequencing, and Éric Normandeau for bioinformatics support. 
Finally, we also thank Brenna Forester and Nusha Keyghobadi for 
helpful feedback while drafting the manuscript, as well as Michael 
Hansen and three anonymous referees for comments on a previ-
ous version of the manuscript. We acknowledge support from the 
Program for Aquaculture Regulatory Research (PARR, DFO), Natural 
Sciences and Engineering Research Council of Canada (NSERC) 
Strategic grant to M‐J Fortin, J Curtis, L Bernatchez, I Côté, and 
F Guichard (#STPGP 430706‐2012), NSERC Discovery Grant to 
M‐J Fortin (#5134), the Canadian Research Chair in Genomics and 
Conservation of Aquatic Resources (L Bernatchez), Ressources 
Aquatiques Québec (RAQ) and NSERC Canada Graduate Scholarship 
to A Xuereb (#D3‐460408‐2014).



5046  |     XUEREB et al.

AUTHOR CONTRIBUTIONS

A.X., M.‐J.F., J.M.R.C. and L.B. conceived and designed the study. 
A.X. analysed the data and wrote the manuscript, with support 
from C.M.K. All authors contributed to editing and revising the 
manuscript.

DATA ACCE SSIBILIT Y

Raw de‐multiplexed sequences for the full data set are available on 
NCBI SRA (BioProject Accession #PRJNA436919). The filtered SNP 
data set is available from the Dryad Digital Repository https://doi.
org/10.5061/dryad.db6177b. R scripts for constrained ordinations 
and polygenic score calculations are available from the Dryad Digital 
Repository https://doi.org/10.5061/dryad.b0p66dn.

ORCID

Amanda Xuereb   https://orcid.org/0000-0002-3975-2299 

Christopher M. Kimber   https://orcid.org/0000-0003-4620-0166 

Louis Bernatchez   https://orcid.org/0000-0002-8085-9709 

Marie‐Josée Fortin   https://orcid.org/0000-0002-9935-1366 

R E FE R E N C E S

Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, 
J. A., … Willis, J. K. (2013). A review of global ocean temperature 
observations: Implications for ocean heat content estimates and cli-
mate change. Reviews of Geophysics, 51, 450–483.

Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. 
V., Garcia, H. E., … Johnson, D. R. (2010). World Oceans Atlas 
2009 Volume 2: Salinity. In S. Levitus (Ed.), NOAA Atlas NESDIS 69. 
Washington, DC, USA: U.S. Government Printing Office.

Babin, C., Gagnaire, P.‐A., Pavey, S. A., & Bernatchez, L. (2017). RAD‐
Seq reveals patterns of additive polygenic variation caused by spa-
tially‐varying selection in the Americal eel (Anguilla rostrata). Genome 
Biology and Evolution, 9, 2974–2986.

Bay, R. A., & Palumbi, S. R. (2014). Multilocus adaptation associated 
with heat resistance in reef‐building corals. Current Biology, 24, 
2952–2956.

Bay, R. A., Rose, N., Barrett, R., Bernatchez, L., Ghalambor, C. K., Lasky, 
J. R., … Ralph, P. (2017). Predicting responses to contemporary en-
vironmental change using evolutionary response architectures. The 
American Naturalist, 189, 463–473.

Benestan, L., Quinn, B., Laporte, M., Maaroufi, H., Rochette, R., & 
Bernatchez, L. (2016). Seascape genomics provides evidence for 
thermal adaptation and current‐mediated population structure 
in American lobster (Homarus americanus). Molecular Ecology, 25, 
5073–5092.

Benjamini, Y., & Hochberg, Y. (1994). Controlling the false discovery rate: 
A practical and powerful approach to multiple testing. Journal of the 
Royal Statistical Society. Series B (Methodological), 1, 289–300.

Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S., & Petrov, D. 
A. (2014). Genomic evidence of rapid and stable adaptive oscillations 
over seasonal time scales in Drosophila. PLoS Genetics, 10, e1004775.

Bernatchez, L. (2016). On the maintenance of genetic variation and ad-
aptation to environmental change: Considerations from population 
genomics in fishes. Journal of Fish Biology, 89, 2519–2556.

Bernatchez, L., Wellenreuther, M., Araneda, C., Ashton, D. T., Barth, J. 
M. I., Beacham, T. D., … Withler, R. E. (2017). Harnessing the power 
of genomics to secure the future of seafood. Trends in Ecology and 
Evolution, 32, 665–680.

Bible, J. M., & Sanford, E. (2016). Local adaptation in an estuarine foun-
dation species: Implications for restoration. Biological Conservation, 
193, 95–102.

Binyon, J. (1972). Physiology of echinoderms. Oxford: Pergamon Press.
Blanchet, F. G., Legendre, P., & Borcard, D. (2008). Forward selection of 

explanatory variables. Ecology, 89, 2623–2632.
Bonin, A., Nicole, F., Pompanon, F., Miaud, C., & Taberlet, P. (2007). 

Population adaptive index: A new method to help measure intraspe-
cific genetic diversity and prioritize populations for conservation. 
Conservation Biology, 21, 697–708.

Bosch, S. (2017). sdmpredictors: Species distribution modeling predic-
tor datasets. R Package Version 0.2.6. https://CRAN.R-project.org/
package=sdmpredictors.

Bourret, V., Dionne, M., Kent, M. P., Lien, S., & Bernatchez, L. (2013). 
Landscape genomics in Atlantic Salmon (Salmo salar): Searching for 
gene‐environment interactions driving local adaptation. Evolution, 
67, 3469–3487.

Bradbury, I. R., Hubert, S., Higgins, B., Borza, T., Bowman, S., Paterson, 
I. G., … Bentzen, P. (2010). Parallel adaptive evolution of Atlantic 
cod on both sides of the Atlantic Ocean in response to temperature. 
Proceedings of the Royal Society B, 277, 3725–3734.

Breitburg, D. L., Hondorp, D. W., Davias, L. A., & Diaz, R. J. (2009). 
Hypoxia, nitrogen, and fisheries: Integrating effects across local and 
global landscapes. Annual Review of Marine Science, 1, 329–349.

Cameron, R. A., Samanta, M., Yuan, A., He, D., & Davidson, E. (2009). 
SpBase: The sea urchin genome database and web site. Nucleic Acids 
Research, 37, D750–D754.

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. 
A. (2013). STACKS: An analysis tool set for population genomics. 
Molecular Ecology, 22, 3124–3140.

Charlesworth, B., Nordborg, M., & Charlesworth, D. (1997). The effects 
of local selection, balanced polymorphism and background selec-
tion on equilibrium patterns of genetic diversity in subdivided pop-
ulations. Genetics Research, 70, 155–174. https://doi.org/10.1017/
S0016672397002954

Conover, D. O. (1998). Local adaptation in marine fishes: Evidence and 
implications for stock enhancement. Bulletin of Marine Science, 62, 
477–493.

De Mita, S., Thuillet, A.‐C., Gay, L., Ahmadi, N., Manel, S., Ronfort, J., 
& Vigouroux, Y. (2013). Detecting selection along environmental 
gradients: Analysis of eight methods and their effectiveness for out-
breeding and selfing populations. Molecular Ecology, 22, 1383–1399. 
https://doi.org/10.1111/mec.12182

De Villemereuil, P., Frichot, É., Bazin, É., François, O., & Gaggiotti, O. E. 
(2014). Genome scan methods against more complex models: When 
and how much should we trust them? Molecular Ecology, 23, 2006–
2019. https://doi.org/10.1111/mec.12705

De Wit, P., & Palumbi, S. R. (2013). Transcriptome‐wide polymorphisms 
of red abalone (Haliotis rufescens) reveal patterns of gene flow and 
local adaptation. Molecular Ecology, 22, 2884–2897.

DFO. (2014). Interim Advice for the Development of Sea Cucumber 
(Parastichopus californicus) Aquaculture in British Columbia. DFO 
Canadian Science Advisory Secretariat Science Response 2014/005.

DFO. (2016). Integrated Fisheries Management Plan Summary. Sea 
Cucumber (Parastichopus californicus) By Dive. Pacific Region 
2016/2017.

Do Prado, F. D., Vera, M., Hermida, M., Bouza, C., Pardo, B. G., Vilas, R., … 
Martínez, P. (2018). Parallel evolution and adaptation to environmen-
tal factors in a marine flatfish: Implications for fisheries and aquacul-
ture management of the turbot (Scophthalmus maximus). Evolutionary 
Applications, 11, 1322–1341.

https://doi.org/10.5061/dryad.db6177b
https://doi.org/10.5061/dryad.db6177b
https://doi.org/10.5061/dryad.b0p66dn
https://orcid.org/0000-0002-3975-2299
https://orcid.org/0000-0002-3975-2299
https://orcid.org/0000-0003-4620-0166
https://orcid.org/0000-0003-4620-0166
https://orcid.org/0000-0002-8085-9709
https://orcid.org/0000-0002-8085-9709
https://orcid.org/0000-0002-9935-1366
https://orcid.org/0000-0002-9935-1366
https://CRAN.R-project.org/package=sdmpredictors
https://CRAN.R-project.org/package=sdmpredictors
https://doi.org/10.1017/S0016672397002954
https://doi.org/10.1017/S0016672397002954
https://doi.org/10.1111/mec.12182
https://doi.org/10.1111/mec.12705


     |  5047XUEREB et al.

Dray, S., Legendre, P., & Peres‐Neto, P. R. (2006). Spatial modelling: A 
comprehensive framework for principal coordinate analysis of neigh-
bour matrices (PCNM). Ecological Modelling, 196, 483–493. https://
doi.org/10.1016/j.ecolmodel.2006.02.015

Dray, S., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., 
…Wagner, H. H. (2017). adespatial: Multivariate Multiscale Spatial 
Analysis. R package version 0.0‐9.

Excoffier, L., Hofer, T., & Foll, M. (2009). Detecting loci under selection in 
a hierarchically structured population. Heredity, 103, 285–298.

Flanagan, S. P., Forester, B. R., Latch, E. K., Aitken, S. N., & Hoban, S. 
(2017). Guidelines for planning genomic assessment and monitor-
ing of locally adaptive variation to inform species conservation. 
Evolutionary Applications, 11, 1035–1052.

Foll, M., & Gaggiotti, O. (2008). A genome‐scan method to identify se-
lected loci appropriate for both dominant and codominant markers: 
A Bayesian perspective. Genetics, 180, 977–993.

Foreman, M. G. G., Callendar, W., Masson, D., Morrison, J., & Fine, I. 
(2014). A model simulation of future oceanic conditions along the 
British Columbia continental shelf. Part II: Results and analyses. 
Atmosphere‐ocean, 52, 20–38. https://doi.org/10.1080/07055900.2
013.873014.

Forester, B. R., Lasky, J. R., Wagner, H. H., & Urban, D. L. (2018). 
Comparing methods for detecting multilocus adaptation with mul-
tivariate genotype‐environment associations. Molecular Ecology, 27, 
2215–2233.

Fuentes‐Pardo, A. P., & Ruzzante, D. E. (2017). Whole‐genome sequenc-
ing approaches for conservation biology: Advantages, limitations, 
and practical recommendations. Molecular Ecology, 26, 5369–5406.

Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). 
Harnessing genomics for delineating conservation units. Trends in 
Ecology and Evolution, 27, 489–496.

Gagnaire, P.‐A., & Gaggioti, O. E. (2016). Detecting polygenic selection in 
marine populations by combining population genomics and quantita-
tive genetics approaches. Current Zoology, 62, 603–616.

Gagnaire, P.‐A., Normandeau, E., Côté, C., Hansen, M. M., & Bernatchez, 
L. (2012). The genetic consequences of spatially varying selection 
in the panmictic American eel (Anguilla rostrata). Genetics, 190, 
725–736.

Gobler, C. J., DePasquale, E. L., Griffith, A. W., & Baumann, H. (2014). 
Hypoxia and acidification have additive and synergistic negative ef-
fects on the growth, survival, and metamorphosis of early life stage 
bivalves. PLoS ONE, 9, e83648.

Golbuu, Y., Gouezo, M., Kurihara, H., Rehm, L., & Wolanski, E. (2016). 
Long‐term isolation and local adaptation in Palau’s Nikko Bay help 
corals thrive in acidic waters. Coral Reefs, 35, 909–918.

Guo, B., DeFaveri, J., Sotelo, G., Nair, A., & Merilä, J. (2015). Population 
genomic evidence for adaptive differentiation in Baltic Sea three‐
spined sticklebacks. BMC Biology, 13, 19. https://doi.org/10.1186/
s12915-015-0130-8

Hamel, J., & Mercier, A. (2008). Population status, fisheries and trade of 
sea cucumbers in temperate areas of the Northern Hemisphere. In V. 
Toral‐Granda, A. Lovatelli, & M. Vasconcellos (Eds.), Sea cucumbers. 
A global review of fisheries and trade. FAO Fisheries and Aquaculture 
Technical Paper. No. 516 (pp. 257–291). Rome: FAO.

Hecht, B. C., Matala, A. P., Hess, J. E., & Narum, S. R. (2015). Environmental 
adaptation in Chinook salmon (Oncorhynchus tshawytscha) through-
out their North American range. Molecular Ecology, 24, 5573–5595.

Hoegh‐Guldberg, O., Poloczanska, E. S., Skirving, W., & Dove, S. (2017). 
Coral reef ecosystems under climate change and ocean acidifica-
tion. Frontiers in Marine Science, 4, 158. https://doi.org/'0.3389/
fmars.2017.00158

Hoegh‐Guldberg, O., Cai, R., Poloczanska, E. S., Brewer, P. G., Sundby, 
S., Hilmi, K., … Jung, S. (2014). The Ocean. In V. R. Barros, C. B. 
Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. 
Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. 

Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White 
(Eds.), Climate change 2014: Impacts, adaptation, and vulnerabil‐
ity. Part B: Regional aspects. Contribution of working group II to the 
fifth assessment report of the intergovernmental panel on climate 
change (pp. 1655–1731). Cambridge UK and New York NY, USA: 
Cambridge University Press.

Jeffery, N. W., Stanley, R. R. E., Wringe, B. F., Guijarro‐Sabaniel, J., 
Bourret, V., Bernatchez, L., … Bradbury, I. R. (2017). Range‐wide 
parallel climate‐associated genomic clines in Atlantic salmon. Royal 
Society Open Science, 4, 171394.

Jensen, J. D., Foll, M., & Bernatchez, L. (2016). The past, present and fu-
ture of genomic scans for selection. Molecular Ecology, 25, 1–4.

Joost, S., Bonin, A., Bruford, M. W., Després, L., Conord, C., Erhardt, G., 
& Taberlet, P. (2007). A spatial analysis method (SAM) to detect can-
didate loci for selection: Towards a landscape genomics approach to 
adaptation. Molecular Ecology, 16, 3955–3969.

Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. 
Ecology Letters, 7, 1225–1241.

Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. 
S., … Gattuso, J.‐P. (2013). Impacts of ocean acidification on marine 
organisms: Quantifying sensitivities and interaction with warming. 
Global Change Biology, 19, 1884–1896.

Kuo, E. S. L., & Sanford, E. (2009). Geographic variation in the upper 
thermal limits of an intertidal snail: Implications for climate envelope 
models. Marine Ecology Progress Series, 388, 137–146.

Lambert, P. (1997). Sea cucumbers of British Columbia, Southeast Alaska 
and Puget Sound. Vancouver, BC: UBC Press.

Laporte, M., Pavey, S. A., Rougeux, C., Pierron, F., Lauzent, M., Budzinski, 
H., … Bernatchez, L. (2016). RAD‐sequencing reveals within‐gener-
ation polygenic selection in response to anthropogenic organic and 
metal contamination in North Atlantic Eels. Molecular Ecology, 25, 
219–237.

Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transfor-
mations for ordination of species data. Oecologia, 129, 271–280.

Lowry, D. B., Hoban, S., Kelley, J. L., Lotterhos, K. E., Reed, L. K., Antolin, 
M. F., & Storfer, A. (2017). Breaking RAD: An evaluation of the utility 
of restriction site‐associated DNA sequencing for genome scans of 
adaptation. Molecular Ecology, 17, 142–152.

Lundgren, P., Vera, J. C., Peplow, L., Manel, S., & van Oppen, M. J. H. (2013). 
Genotype‐environment correlations in corals from the Great Barrier 
Reef. BMC Genetics, 14, 9. https://doi.org/10.1186/1471-2156-14-9

Manel, S., Perrier, C., Pratlong, M., Abi‐Rached, L., Paganini, J., Pontarotti, 
P., & Aurelle, D. (2016). Genomic resources and their influence on 
the detection of the signal of positive selection in genome scans. 
Molecular Ecology, 25, 170–184.

Matear, R. J., Hirst, A. C., & McNeil, B. I. (2000G). Changes in dissolved 
oxygen in the Southern Ocean with climate change. Geochemistry, 
Geophysics, Geosystems, 1, 2000GC000086.

Morrison, J., Callendar, W., Foreman, M. G. G., Masson, D., & Fine, I. 
(2014). A model simulation of future oceanic conditions along the 
British Columbia continental shelf. Part I: Forcing fields and initial 
conditions. Atmosphere ‐ Ocean, 52, 1–19.

Munday, P. L., Donelson, J. R. M., & Domingos, J. A. (2017). Potential 
for adaptation to climate change in a coral reef fish. Global Change 
Biology, 23, 307–317.

Narum, S. R., & Hess, J. E. (2011). Comparison of FST outlier tests for 
SNP loci under selection. Molecular Ecology Resources, 11, 184–194.

Nielsen, E. S., Beger, M., Henriques, R., Selkoe, K. A., & von der Heyden, 
S. (2017). Multispecies genetic objectives in spatial conservation 
planning. Conservation Biology, 31, 872–882.

O'Connor, M. I., Bruno, J. F., Gaines, S. D., Halpern, B. S., Lester, S. E., 
Kinlan, B. P., & Weiss, J. M. (2007). Temperature control of larval 
dispersal and the implications for marine ecology, evolution, and 
conservation. Proceedings of the National Academy of Sciences, 104, 
1266–1271.

https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1080/07055900.2013.873014
https://doi.org/10.1080/07055900.2013.873014
https://doi.org/10.1186/s12915-015-0130-8
https://doi.org/10.1186/s12915-015-0130-8
https://doi.org/'0.3389/fmars.2017.00158
https://doi.org/'0.3389/fmars.2017.00158
https://doi.org/10.1186/1471-2156-14-9


5048  |     XUEREB et al.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, 
D., …Wagner, H. H. (2017). vegan: Community Ecology Package. R 
package version 2.4‐5. https://CRAN.R-project.org/package=vegan.

Osovitz, C. J., & Hoffman, G. E. (2005). Thermal history‐dependent 
expression of the hsp70 gene in purple sea urchins: Biogeographic 
patterns and the effect of temperature acclimation. Journal of 
Experimental Biology and Ecology, 327, 134–143.

Palumbi, S. R., Barshis, D. J., Traylor‐Knowles, N., & Bay, R. A. (2014). 
Mechanisms of reef coral resistance to future climate change. 
Science, 344, 895–898.

Pardo, L. M., & Johnson, L. E. (2005). Explaining variation in life‐history 
traits: Growth rate, size, and fecundity in a marine snail across an 
environmental gradient lacking predators. Marine Ecology Progress 
Series, 296, 229–239.

Pespeni, M. H., & Palumbi, S. R. (2013). Signals of selection in outlier 
loci in a widely dispersing species across an environmental mosaic. 
Molecular Ecology, 22, 3580–3597.

Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J. L. (2012). Development 
of high‐density genetic maps for barley and wheat using a novel two‐
enzyme genotyping‐by‐sequencing approach. PLoS ONE, 7, e32253.

R Core Team. (2016). R: A language and environment for statistical comput‐
ing. Vienna, Austria: R Foundation for Statistical Computing. https://
www.R-project.org/.

Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R. 
(2015). A practical guide to environmental association analysis in 
landscape genomics. Molecular Ecology, 24, 4348–4370.

Rocha‐Olivares, A., & Vetter, R. D. (1999). Effects of oceanographic cir-
culation on the gene flow, genetic structure, and phylogeography of 
the rosethorn rockfish (Sebastes helvomaculatus). Canadian Journal of 
Fisheries and Aquatic Sciences, 56, 803–813.

Russell, M. (2013). Echinoderm responses to variation in salinity. 
Advances in Marine Biology, 66, 171–212.

Sanford, E., & Kelly, M. (2011). Local adaptation in marine invertebrates. 
Annual Review of Marine Science, 3, 509–535.

Savolainen, O., Lascoux, M., & Merilä, J. (2013). Ecological genomics of 
local adaptation. Nature Reviews Genetics, 11, 807–820.

Sbrocco, E. J., & Barber, P. H. (2013). MARSPEC: Ocean climate lay-
ers for marine spatial ecology. Ecology, 94, 979. https://doi.
org/10.1890/12-1358.1

Schoville, S. D., Bonin, A., François, O., Lobreaux, S., Melodelima, 
C., & Manel, S. (2012). Adaptive genetic variation on the land-
scape: Methods and cases. Annual Review of Ecology, Evolution, and 
Systematics, 43, 23–43.

Sea Urchin Genome Sequencing Consortium. (2006). The genome of 
the sea urchin Strongylocentrotus purpuratus. Science, 314, 941–952. 
https://doi.org/10.1126/science.1133609

Sgrò, C. M., Lowe, A. J., & Hoffmann, A. A. (2011). Building evolution-
ary resilience for conserving biodiversity under climate change. 
Evolutionary Applications, 4, 326–337.

Sork, V. L., Aitken, S. N., Dyer, R. J., Eckert, A. J., Legendre, P., & Neale, 
D. B. (2013). Putting the landscape into the genomics of trees: 
Approaches for understanding local adaptation and population re-
sponses to changing climate. Tree Genetics & Genomes, 9, 901–911.

Stanley, R. E., DiBacco, C., Lowen, B., Beiko, R. G., Jeffery, N. W., van 
Wyngaarden, M., … Bradbury, I. R. (2018). A climate‐associated mul-
tispecies cryptic cline in the northwest Atlantic. Science. Advances, 
4, eaaq0929.

Stickle, W. B., & Diehl, W. J. (1987). Effects of salinity on echinoderms. 
Echinoderm Studies, 2, 235–285.

Sunday, J. M., Popovic, I., Palen, W. J., Foreman, M. G. G., & Hart, M. 
W. (2014). Ocean circulation model predicts high genetic structure 
observed in a long‐lived pelagic developer. Molecular Ecology, 23, 
5036–5047.

Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., & 
De Clerck, O. (2012). Bio‐ORACLE: A global environmental data-
set for marine species distribution modelling. Global Ecology and 
Biogeography, 21, 272–281.

van Wyngaarden, M., Snelgrove, P. V. R., DiBaccio, C., Hamilton, L. 
C., Rodrguez‐Ezpeleta, N., Jeffrey, N. W., … Bradbury, I. R. (2017). 
Identifying patterns of dispersal, connectivity and selection in the 
sea scallop, Placopecten magellanicus, using RADseq derived SNPs. 
Evolutionary Applications, 10, 102–117.

von der Heyden, S. (2017). Making evolutionary history count: 
Biodiversity planning for coral reef fishes and the conservation of 
evolutionary processes. Coral Reefs, 36, 183–194.

Xuereb, A., Benestan, L., Normandeau, E., Curtis, J. M. R., Bernatchez, 
L., & Fortin, M.‐J. (2018). Asymmetric oceanographic processes me-
diate connectivity and population genetic structure as revealed by 
RADseq in a highly dispersive marine invertebrate (Parastichopus cal‐
ifornicus). Molecular Ecology, 27, 2347–2364.

Yanick, J. F., Heath, J. W., & Heath, D. D. (2003). Survival and growth 
of local and transplanted blue mussels (Mytilus trossulus, Lamark). 
Aquaculture Research, 34, 869–875.

Yeaman, S., & Otto, S. P. (2011). Establishment and maintenance of 
adaptive genetic divergence under mutation, selection, and drift. 
Evolution, 65, 2123–2129.

Yeaman, S., Hodgins, K. A., Lotterhos, K. E., Suren, H., Nadeau, S., Degner, 
J. C., … Aitken, S. N. (2016). Convergent local adaptation to climate in 
distantly related conifers. Science, 353, 1431–1433.

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article. 

 How to cite this article: Xuereb A, Kimber CM, Curtis JMR, 
Bernatchez L, Fortin M‐J. Putatively adaptive genetic 
variation in the giant California sea cucumber (Parastichopus 
californicus) as revealed by environmental association analysis 
of restriction‐site associated DNA sequencing data. Mol Ecol. 
2018;27:5035–5048. https://doi.org/10.1111/mec.14942

https://CRAN.R-project.org/package=vegan
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1890/12-1358.1
https://doi.org/10.1890/12-1358.1
https://doi.org/10.1126/science.1133609
https://doi.org/10.1111/mec.14942

